大数据权限授权管理框架:Apache Sentry和Ranger

2024-01-23 11:40

本文主要是介绍大数据权限授权管理框架:Apache Sentry和Ranger,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • Sentry和Ranger的概述
  • Sentry
    • Sentry的架构模型
    • Sentry与Hadoop生态圈组件的集成
  • Ranger
    • Ranger的架构模型
    • Ranger的策略配置
      • 对于用户的ACL控制
      • 表的行过滤及列处理
    • Ranger的Policy的灵活性
  • 引用

前言


上篇文章后半部分提到了业界流行的大数据权限管理框架Apache Sentry和Ranger。二者在功能上具有很高的相似性,但是在具体细节上上篇文章阐述的还不够细致。本文笔者来深入浅出地聊聊这两个框架,以及它们的少许异同点。熟悉掌握使用外部权限管理框架,并且将它们合理地应用于自身内部大数据组件系统内,无疑将会大大提高内部组件使用的安全性。

Sentry和Ranger的概述


从最源头开始说起这2个项目,Sentry首先是由Cloudera公司内部开发而来的,初衷是为了让用户能够细粒度的控制Hadoop系统中的数据(这里主要指HDFS,Hive的数据)。所以Sentry对HDFS,Hive以及同样由Cloudera开发的Impala有着很好的支持性。

而Ranger则是由于另一家公司Hortonworks所主导。它同样是做细粒度的权限控制。但相比较于Sentry而言,它能支持更丰富的组件,包括于 HDFS, Hive, HBase, Yarn, Storm, Knox, Kafka, Solr and NiFi。

这两个框架在权限管理时都有运用到基于角色的访问控制原理(role-based access control,RBAC)。换句话说,当新来一个用户时,我们赋予它的是一个身份角色,然后这个用户的执行权限操作完全由统一的角色本身所允许的一些权限。基于角色的访问控制,能够大大减轻系统对于大数据量用户的直接ACL控制。

下面我们来细聊着两大组件的内容。

Sentry


Sentry的架构模型


上文提到过,Sentry在最初发展阶段只是对部分组件支持的比较好,没有像Ranger支持的那么多。

首先,我们来看Sentry的整体架构

在这里插入图片描述

DataEngine指的是具体的数据应用程序,这里指的是HDFS,Hive和Impala。
Plugin,Plugin程序负责和Sentry Server通信,做权限策略信息的同步。同时在Plugin程序中,包含了认证引擎模块,来做权限的验证操作。
Policy metadata,这里的matadata存储权限策略数据,对应的会需要一个外部存储db。

从另一个角度层面来看Sentry的内部结构

在这里插入图片描述

Sentry与Hadoop生态圈组件的集成


Sentry与Hive,HDFS,Impala等组件集成的较好, 结构图如下图所示:

在这里插入图片描述

从上图中,我们注意到一个细节,在HDFS里面多了一个cache层,这个是用来干嘛的呢?其实为了保持HDFS的权限与HIve的一致,NameNode的Sentry Plugin程序会定期拉取Hive的Metadata信息以及Sentry Server上的权限信息,并cache起来。这可以说也是为了性能考虑了。

另外地在Sentry Sever中,它还有audit模块,记录了所有模块的请求访问记录。

Ranger


Ranger相比较于Sentry来说,它的功能可以说更加具有通用性。这里说的通用性在于以下两点:

  • 上层支持的应用组件更多
  • 对于控制的资源的类型更多

第一点,前文已经提到过,第二点这里的资源就不仅仅只有文件和目录了这种了,它还可以有表,行以及列的访问控制。这些都是体现在Ranger的策略信息里面的。

Ranger的架构模型


以下是Ranger的架构模型,和Sentry有类似之处。
在这里插入图片描述

对于具体的策略控制,由用户通过admin web ui页面进行配置。

Ranger的策略配置


对于用户的ACL控制


我们先来看最简单的,对于用户的访问控制,我们可以设置用户对于选定的路径有哪些权限,策略细节如下:

在这里插入图片描述

配置此策略信息后,系统会对这些用户做额外判断处理。

表的行过滤及列处理


小标题这里我们指的是对Hive的表数据。假设我们有一以下Hive表。

Table: customer
+----+------------+-----------+--------------+---------------+----------------+
| id | name_first | name_last | addr_country | date_of_birth | phone_num      |
+----+------------+-----------+--------------+---------------+----------------+
|  1 | Mackenzy   | Smith     | US           | 1993-12-18    | 123-456-7890   |
|  2 | Sherlyn    | Miller    | US           | 1975-

这篇关于大数据权限授权管理框架:Apache Sentry和Ranger的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636290

相关文章

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X