【Flink-1.17-教程】-【四】Flink DataStream API(3)转换算子(Transformation)【用户自定义函数(UDF)】

本文主要是介绍【Flink-1.17-教程】-【四】Flink DataStream API(3)转换算子(Transformation)【用户自定义函数(UDF)】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Flink-1.17-教程】-【四】Flink DataStream API(3)转换算子(Transformation)【用户自定义函数(UDF)】

  • 1)函数类(Function Classes)
  • 2)富函数类(Rich Function Classes)

用户自定义函数(user-defined functionUDF),即用户可以根据自身需求,重新实现算子的逻辑。

用户自定义函数分为:函数类匿名函数富函数类

1)函数类(Function Classes)

Flink 暴露了所有 UDF 函数的接口,具体实现方式为接口或者抽象类,例如 MapFunctionFilterFunctionReduceFunction 等。所以用户可以自定义一个函数类,实现对应的接口。

需求:用来从用户的点击数据中筛选包含“sensor_1”的内容:

方式一:实现 FilterFunction 接口

public class TransFunctionUDF {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<WaterSensor> stream = env.fromElements(new WaterSensor("sensor_1", 1, 1),new WaterSensor("sensor_1", 2, 2),new WaterSensor("sensor_2", 2, 2),new WaterSensor("sensor_3", 3, 3));DataStream<String> filter = stream.filter(new UserFilter());filter.print();env.execute();}public static class UserFilter implementsFilterFunction<WaterSensor> {@Overridepublic boolean filter(WaterSensor e) throws Exception {return e.id.equals("sensor_1");}}
}

方式二:通过匿名类来实现 FilterFunction 接口

DataStream<String> stream = stream.filter(new FilterFunction<WaterSensor>() {@Overridepublic boolean filter(WaterSensor e) throws Exception {return e.id.equals("sensor_1");}});

方式二的优化:为了类可以更加通用,我们还可以将用于过滤的关键字"home"抽象出来作为类的属性,调用构造方法时传进去

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<WaterSensor> stream = env.fromElements(new WaterSensor("sensor_1", 1, 1),new WaterSensor("sensor_1", 2, 2),new WaterSensor("sensor_2", 2, 2),new WaterSensor("sensor_3", 3, 3));DataStream<String> stream = stream.filter(newFilterFunctionImpl("sensor_1"));public static class FilterFunctionImpl implementsFilterFunction<WaterSensor> {private String id;FilterFunctionImpl(String id) {this.id = id;}@Overridepublic boolean filter(WaterSensor value) throws Exception {return thid.id.equals(value.id);}}}

方式三:采用匿名函数(Lambda)

public class TransFunctionUDF {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<WaterSensor> stream = env.fromElements(new WaterSensor("sensor_1", 1, 1),new WaterSensor("sensor_1", 2, 2),new WaterSensor("sensor_2", 2, 2),new WaterSensor("sensor_3", 3, 3));
//map 函数使用 Lambda 表达式,不需要进行类型声明SingleOutputStreamOperator<String> filter =stream.filter(sensor -> "sensor_1".equals(sensor.id));filter.print();env.execute();}
}

2)富函数类(Rich Function Classes)

“富函数类”也是 DataStream API 提供的一个函数类的接口,所有的 Flink 函数类都有其 Rich 版 本 。 富函数类一般是以抽象类的形式出现的。例如:RichMapFunctionRichFilterFunctionRichReduceFunction 等。

与常规函数类的不同主要在于,富函数类可以获取运行环境的上下文,并拥有一些生命周期方法,所以可以实现更复杂的功能。

Rich Function 有生命周期的概念。典型的生命周期方法有:

  • open() 方法,是 Rich Function 的初始化方法,也就是会开启一个算子的生命周期。当一个算子的实际工作方法例如 map() 或者 filter() 方法被调用之前,open() 会首先被调用。

  • close() 方法,是生命周期中的最后一个调用的方法,类似于结束方法。一般用来做一些清理工作。

需要注意的是,这里的生命周期方法,对于一个并行子任务来说只会调用一次;而对应的,实际工作方法,例如 RichMapFunction 中的 map(),在每条数据到来后都会触发一次调用。

来看一个例子说明:

public class RichFunctionExample {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(2);env.fromElements(1, 2, 3, 4).map(new RichMapFunction<Integer, Integer>() {@Overridepublic void open(Configuration parameters) throws Exception {super.open(parameters);System.out.println(" 索 引 是 : " + getRuntimeContext().getIndexOfThisSubtask() + " 的任务的生命周期开始");}@Overridepublic Integer map(Integer integer) throwsException {return integer + 1;}@Overridepublic void close() throws Exception {super.close();System.out.println(" 索 引 是 : " + getRuntimeContext().getIndexOfThisSubtask() + " 的任务的生命周期结束");}}).print();env.execute();}
}

这篇关于【Flink-1.17-教程】-【四】Flink DataStream API(3)转换算子(Transformation)【用户自定义函数(UDF)】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/636000

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C