Python - 深夜数据结构与算法之 高级字符串

2024-01-22 09:52

本文主要是介绍Python - 深夜数据结构与算法之 高级字符串,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一.引言

二.经典算法实战

1.Longest-Common-Sub-Seq [1143]

2.Edit-Distance [72]

3.Longest-Palindromic-Str [5]

4.Distinct-Sub-Seq [115]

5.Regular-Exp-Match [10]

三.总结


一.引言

上一节介绍了字符串的基本操作,本文介绍字符串更复杂的一些操作,主要设计动态规划与字符串扩展。

二.经典算法实战

1.Longest-Common-Sub-Seq [1143]

最长公共子序列: https://leetcode.cn/problems/longest-common-subsequence/description/

◆ 题目分析

状态转移方程:

根据二维 DP Table 理解转移方程更轻松些。

◆ 动态规划

class Solution(object):def longestCommonSubsequence(self, text1, text2):""":type text1: str:type text2: str:rtype: int"""m, n = len(text1), len(text2)dp = [[0] * (n + 1) for _ in range(m + 1)]for i in range(1, m + 1):c1 = text1[i - 1]for j in range(1, n + 1):c2 = text2[j - 1]if c1 == c2:dp[i][j] = dp[i-1][j-1] + 1else:dp[i][j] = max(dp[i-1][j], dp[i][j-1])return dp[-1][-1]

2.Edit-Distance [72]

编辑距离: https://leetcode.cn/problems/edit-distance/

◆ 题目分析

和上一题的 DP Table 类似,但是初始的边界条件有所不同,其次需要注意转换时需要计算三个位置的最小值。

◆ 动态规划

class Solution(object):def minDistance(self, word1, word2):""":type word1: str:type word2: str:rtype: int"""# w[i] = w[j] -> w[i][j] = w[i-1]w[j-1]# w[i] != w[j] -> w[i][j] = min(w[i-1][j-1] + 1, w[i-1][j] + 1, w[i][j-1] +1)M, N = len(word1), len(word2)# 状态空间dp = [[0] * (N + 1) for _ in range(M + 1)]# word1="" word2="xxxx" 则 word1 -> word2 需要变换4次, 同理可得另一种情况for i in range(M + 1):dp[i][0] = ifor j in range(N + 1):dp[0][j] = jfor i in range(1, M + 1):c1 = word1[i-1]for j in range(1, N + 1):c2 = word2[j-1]# 此时字符相等,该位置无需变换,所以二者相同if c1 == c2:dp[i][j] = dp[i - 1][j - 1]else:# 此时字符不同,需要看三种方法那种转换最小dp[i][j] = min(dp[i - 1][j], dp[i][j - 1], dp[i - 1][j - 1]) + 1return dp[-1][-1]

3.Longest-Palindromic-Str [5]

最长回文子串: https://leetcode.cn/problems/longest-palindromic-substring/description/ 

◆ 题目分析

首先明确回文串的定义,同时明确如果 i 或者 ii 为回文串时,我们可以向左右两边扩散,如果相同即为回文串。

◆ 中心扩散

class Solution(object):def longestPalindrome(self, s):""":type s: str:rtype: str"""# 中心扩散def palindrome(s, st, end):# 边界合法且左右相等则向两边扩散while st >= 0 and end < len(s) and s[st] == s[end]:st -= 1end += 1# 我们需要 st-end 最后多加减了一次实际是 st-1 end+1,所以需要回补return s[st+1: end]res = ""for i in range(len(s)):sub1 = palindrome(s, i, i)sub2 = palindrome(s, i, i + 1)if len(sub1) > len(res):res = sub1if len(sub2) > len(res):res = sub2return res

4.Distinct-Sub-Seq [115]

不同子序列: https://leetcode.cn/problems/distinct-subsequences

◆ 题目分析

- 确定 DP 定义: 

dp[i][j]:以 i-1 为结尾的 s 子序列中出现以 j-1 为结尾的 t 的个数为 dp[i][j]。

- 确定递推公式:

s[i-1] == t[j-1] - 此时 dp[i][j] 可以不考虑这两个位置,所以复用 dp[i-1][j-1];当然也可以考虑 dp[i-1][j] 的情况,即 s[i-1] 结尾子序列中出现以 j 结尾的 t 的个数,因为我们计算的是 s 中有多少个 t,不是 t 中有多少个 s,

- 初始状态

dp[i][0] 表示:以 i-1为结尾的 s 可以随便删除元素,出现空字符串的个数,所以 dp[i][0] = 1

dp[0][j] 表示:空字符串 s 可以随便删除元素,出现以 j-1 为结尾的字符串 t 的个数,dp[0][j] = 0

dp[0][0]: dp[0][0] 应该是 1,空字符串 s,可以删除 0 个元素,变成空字符串 t。

◆ 动态规划

class Solution:def numDistinct(self, s, t):m, n = len(s), len(t)dp = [[0]*(n+1) for _ in range(m+1)]for i in range(m+1):dp[i][0] = 1for j in range(1, n+1):dp[0][j] = 0for i in range(1, m+1):for j in range(1, n+1):if s[i-1] == t[j-1]:dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]else:dp[i][j] = dp[i - 1][j]return dp[-1][-1]

5.Regular-Exp-Match [10]

正则匹配: https://leetcode.cn/problems/regular-expression-matching/

◆ 题目分析

首先判断第一个字符是否相同:

- 此时要么 s[0] = p[0] 或者 s[0] 随意 且 p[0] = "."

如果第一个字符相同,则进行推进,分多种情况:

- 如果此时 p 长度大于 2 且第二位 为 "*",则进入 "x*" 的匹配逻辑:

- 不需要 x* 匹配,默认 x 为 0 位,则直接忽略 2 位 p -> s 不变,p 推进两位 p[:2]

- x* 匹配了一个,接着匹配 x,则 s 推进1为 s[1:],p 不动,因为还在匹配 x

- p 非 "x*" 的状态,则判断第一位是否匹配,匹配后 s、p 同步推进 [1:]

◆ 递归实现

class Solution(object):def isMatch(self, s, p):""":type s: str:type p: str:rtype: bool"""# 模式为空时 只能匹配空串if len(p) == 0:return len(s) == 0# s 第一个字符与 p第一个字符相等或者 p 第一个字符为 "."firstMatch = len(s) >= 1 and (s[0] == p[0] or p[0] == '.')if len(p) >= 2 and p[1] == '*':# 0 * Char 的忽略情况 与 消除一个前面的字符继续保留该通配符return self.isMatch(s, p[2:]) or (firstMatch and self.isMatch(s[1:], p))# 硬匹配后同步推进return firstMatch and self.isMatch(s[1:], p[1:])

超时了,因为第二步 "x*" 会出现重复多次的情况。

◆ 递归 + Cache

class Solution(object):def __init__(self):self.cache = {}def isMatch(self, s, p):""":type s: str:type p: str:rtype: bool"""def DFS(i, j):if (i, j) in self.cache:return self.cache[(i, j)]# 模式为空时 只能匹配空串# if len(p) == 0:#   return len(s) == 0if j == len(p):return i == len(s)# # s 第一个字符与 p第一个字符相等或者 p 第一个字符为 "."# firstMatch = len(s) >= 1 and (s[0] == p[0] or p[0] == '.')firstMatch = i < len(s) and (s[i] == p[j] or p[j] == ".")# if len(p) >= 2 and p[1] == '*':if j + 1 < len(p) and p[j+1] == "*":# 0 * Char 的忽略情况 与 消除一个前面的字符继续保留该通配符# self.isMatch(s, p[2:]) or (firstMatch and self.isMatch(s[1:], p))re = DFS(i, j+2) or (firstMatch and DFS(i+1, j))self.cache[(i, j)] = rereturn re# 硬匹配后同步推进# return firstMatch and self.isMatch(s[1:], p[1:])re = firstMatch and DFS(i+1, j+1)self.cache[(i, j)] = rereturn rereturn DFS(0, 0)

把上面的代码转换为 DFS 并添加 cache,大家可以对照着之前的代码转换下。

三.总结

高级字符串的题目一般需要用到动态规划的方法,我们可以构建 DP Table,dp[i][j] 转移需要左上的三个位置的信息,根据题目的不同,做相应的取舍。

这篇关于Python - 深夜数据结构与算法之 高级字符串的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/632621

相关文章

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤