单源点最短路径问题(Dijkstra算法)

2024-01-22 09:48

本文主要是介绍单源点最短路径问题(Dijkstra算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如图所示。设v0是起始点,求v0到其它各结点的最短路径。


设visited是已经生成了最短路径的结点集合(包括v0),对于当前不在visited中的结点w,记DIST(w)是从v0开始,只经过visited中的结点而在w结束的那条最短路径的长度;

(1) 如果下一条最短路径是到结点u,则这条路径是从结点v0出发在u处终止,且只经过那些在visited中的结点,即由v0至u的这条最短路径上的所有中间结点都是visited中的结点:设w是这条路径上的任意中间结点,则从v0到u的路径也包含了一条从v0到w的路径,且其长度小于从v0到u的路径长度,如下图:


(2) 所生成的下一条路径的终点u必定是所有不在visited内的结点中且具有最小距离DIST(u)的结点。
(3) 如果选出了这样结点u并生成了从v0到u的最短路径之后,结点u将成为visited中的一个成员。此时,那些从v0出发,只经过visited中的结点并且在visited外的结点w处结束的最短路径可能会减少——DIST(w)的值变小:如果这样的路径的长度发生了改变,则这些路径必定是一条从v0开始,经过u然后到w的更短的路所致,概念如下图:


因此整个算法的流程为:

假设存在Graph=<V,E>,源顶点为V0,visited={V0},dist[vi]记录V0到vi的最短距离,path[vi]记录从V0到vi最短路径上,vi之前的一个顶点。

1.从(V-visited)中,即未加入的u的集合中选择使dist[vi]值最小的顶点vi,将vi加入到visited中;

2.更新与i直接相邻顶点的dist值。(dist[j]=min{dist[j],dist[u]+Graph[u][j]})

3.直到说visited=V,停止。


#include <fstream>
#include <iostream>
#include <limits.h>
#include <stack>
using namespace std;
#define max INT_MAX;	
int **Graph;//n个顶点的有向图,包含e条边
int n;
int e;
//读入数据
void input();//g为有向图
//dist为v0到各点最短路径长度
//path为记录的从v0到某点的最短路径
void Dijkstra(int **g, int nsize, int *dist, int *path, int v0);//从v0到vi的路径
void showPath(int* path, int* dist, int v0, int vi);int main()
{input();/*for (int i = 0; i < n; i++){for (int j = 0; j < n; j++)cout << Graph[i][j] << "  ";cout << endl;}*/int *dist = new int[n];	//距离数组int *path = new int[n]; //路径数组int v0;cin >> v0;Dijkstra(Graph, n, dist, path, v0-1); //从1开始计数就减1,否则去掉cout << "start	" << "end	" << "length	" << "nodes list	" << endl;for (int i = 0; i < n; i++){if (i != v0){showPath(path, dist, v0-1, i);}}delete dist;delete path;delete Graph;return 0;
}void input()
{fstream cin("a.txt");int start, end, weight;//代表一条s->t权重为weight的边cin >> n >> e;Graph = new int*[n];//初始化有向图for (int i = 0; i < n; i++){Graph[i] = new int[n];for (int j = 0; j < n; j++){if (j == i)Graph[i][j] = 0;//对角线置0elseGraph[i][j] = 0;}}//读入数据for (int i = 0; i < e; i++){cin >> start >> end >> weight;Graph[start - 1][end - 1] = weight; //减1:图中节点从1开始}
}void Dijkstra(int **g, int nsize, int *dist, int *path, int v0)
{bool *visited = new bool[nsize]; //记录已经访问过的点(依次加入的到v0距离最近) for (int i = 0; i < nsize; i++)//初始化{if (i != v0 && g[v0][i] > 0){dist[i] = g[v0][i]; //用初值更新distpath[i] = v0; //path中存储连接到从v0到i的上一个节点(i前面一个)}else //不与v0相邻的,设置权重为无穷大{dist[i] = max;path[i] = -1; //没有连接}visited[i] = false; //将所有节点置为未访问过dist[v0] = 0;path[v0] = v0;}visited[v0] = true; //将v0加入到集合中for (int i = 1; i < nsize; i++) //将剩余节点(从1到n-1)依次加入到集合visited中{int minCost = max;int u; //即将加入集合visited的点for (int k = 0; k < nsize; k++) //找到集合外距离v0最近的点{if (visited[k] == false && dist[k] < minCost){minCost = dist[k];u = k;}}visited[u] = true;for (int j = 0; j < nsize; j++) //每加入一个点就更新dist{//比较从dist[v0-->j]与dist[v0-->若干点-->u-->j]if (visited[j] == false && Graph[u][j] > 0 && dist[j] > minCost + Graph[u][j]){dist[j] = minCost + Graph[u][j];path[j] = u; //j进过w到v0,比j直接到v0原路径近}}}
}void showPath(int* path, int* dist,int v0, int vi)
{stack<int> s;cout << 'v' << v0 << '	'; //startcout << 'v' << vi << '	'; //endwhile (vi != v0){s.push(vi);vi = path[vi]; //vi位置存储的是v0到vi的上个节点的位置}s.push(vi);cout << dist[vi] << '	'; //distancewhile (!s.empty()){cout << 'v' << s.top() << ' ';s.pop();}cout << endl;
}

测试数据为:

7 12
1 2 20
1 3 50
1 4 30
2 3 25
2 6 70
3 5 25
3 6 50
4 3 40
4 5 55
5 6 10
5 7 70
6 7 50


测试结果为:



这篇关于单源点最短路径问题(Dijkstra算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/632608

相关文章

SpringBoot内嵌Tomcat临时目录问题及解决

《SpringBoot内嵌Tomcat临时目录问题及解决》:本文主要介绍SpringBoot内嵌Tomcat临时目录问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录SprinjavascriptgBoot内嵌Tomcat临时目录问题1.背景2.方案3.代码中配置t

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu