Python实现单因素方差分析

2024-01-22 06:36

本文主要是介绍Python实现单因素方差分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python实现单因素方差分析

1.背景

正念越来越受到人们关注,正念是一种有意的、不加评判的对当下的注意觉察。可以通过可以通过观呼吸、身体扫描、正念饮食等多种方式培养。
为了验证正念对记忆力的影响,选取三组被试分别进行正念训练,运动训练和无训练,以测量他们的短时记忆是否改善。在各种条件严格控制下,三个月后测量各组的短时记忆回忆容量,结果如下:
在这里插入图片描述

为了验证各组是否存在差异,采用单因素方差分析进行分析,并同时使用SPSS对每一步代码进行说明。
PS:此处为随机数生成,且为了方便展示使用了宽数据,导入SPSS时可使用“数据”-“重构”转换为SPSS常用的长数据。

2.Python代码

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.stats.multicomp import pairwise_tukeyhsd  # 事后比较
from statsmodels.formula.api import ols
from statsmodels.stats.anova import anova_lmindependent = "处理"  # 自变量
dependent = '短时记忆回忆成绩'  # 因变量# 设置画图参数
def define_plt():plt.rcParams['font.sans-serif'] = ['SimHei', ]  # 设置汉字字体plt.rcParams['font.size'] = 12  # 字体大小plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号# 处理数据
def general_data():# 使用melt()函数将读取数据进行结构转换,以满足ols()函数对数据格式的要求,# melt()函数能将列标签转换为列数据excel_data = pd.read_excel('不同正念处理下的短时记忆成绩.xlsx', index_col=0)melt_data = excel_data.melt(var_name=independent, value_name=dependent)print("\n=================melt_data========================")print(melt_data)return melt_data# 显示箱型线,检查是否有极端数值
def show_boxplot(melt_data):sns.boxplot(x=independent, y=dependent, data=melt_data)plt.show()  # 需要放最后运行,否则会阻挡后面程序的运行# 方差分析
def anova(melt_data):# ols()创建一线性回归分析模型model_ols = ols('%s~C(%s)' % (dependent, independent), melt_data).fit()# anova_lm()函数创建模型生成方差分析表anova_table = anova_lm(model_ols, typ=2)print("\n=================以下为方差分析表====================")print(anova_table)# 事后比较
def multiple_comparisons(melt_data):# 进行事后比较分析print("\n=================事后比较分析结果====================")print(pairwise_tukeyhsd(melt_data[dependent], melt_data[independent]))define_plt()  # 定义plt参数
memory_result = general_data()  # 生成数据
anova(memory_result)  # 方差分析
multiple_comparisons(memory_result)  # 事后比较
show_boxplot(memory_result)  # 显示箱型线

3.结果

3.1 运行以上代码,会出现如下结果

3.3.1 方差分析输出结果

在这里插入图片描述

对比一下SPSS的输出结果:
英文版
在这里插入图片描述

中文版
在这里插入图片描述

可以看出,Python的输出结果比较简洁,不过其实组别和误差两项也够用了。

3.3.2 事后比较分析结果
在这里插入图片描述

和SPSS中的结果进行比较:
英文版:
在这里插入图片描述

中文版:
在这里插入图片描述

可以看出,Python也是只输出了三个组的对比,不过和SPSS相比,也只是反过来用负数表示而已,重点关注画框的地方,大于0.05说明不能拒绝零假设,Python输出结果则是用False表示。

3.3.3 箱型图
在这里插入图片描述

SPSS的输出结果:
在这里插入图片描述

PS:部分字的内容不一样是我在不同地方输入变量的问题,这个无关紧要。
可以看到正念组是明显高于其他两个组的。

箱型图怎么看

箱型图的基本组成部分包括:
1.上边缘:数据点的最右侧界限,通常是最大值。
2.下边缘:数据点的最左侧界限,通常是最小值。
3.中位数:所有数据点按照大小顺序排列后位于中间位置的数值。
4.四分位距:IQR(Interquartile Range,四分位间距)定义为中位数与第一四分位数之间的距离的一半。
5.异常值:那些明显偏离数据集整体趋势的数据点,通常用圆点表示。
箱型图一般不包括均值。

4.逐个部分讲解

4.1 宽数据转换为长数据

当我们把这张Excel表导入SPSS时,
在这里插入图片描述

会显示如下
在这里插入图片描述

而我们要将其转换为长数据,即每个列为一个变量的类型

4.1.1 Python代码

在Python代码中,使用melt()函数实现

# 处理数据
def general_data():# 使用melt()函数将读取数据进行结构转换,以满足ols()函数对数据格式的要求,# melt()函数能将列标签转换为列数据excel_data = pd.read_excel('不同正念处理下的短时记忆成绩.xlsx', index_col=0)melt_data = excel_data.melt(var_name=independent, value_name=dependent)print("\n=================melt_data========================")print(melt_data)return melt_data

我们将输出结果打印出来,如下

=================melt_data========================处理  短时记忆回忆成绩
0   正念组      11.3
1   正念组      10.8
2   正念组       8.4
3   正念组       8.5
4   正念组       8.9
5   正念组      10.7
6   正念组       8.4
7   正念组      11.1
8   正念组       8.3
9   正念组      11.9
10  运动组       7.0
11  运动组       6.4
12  运动组       7.6
13  运动组       6.2
14  运动组       6.6
15  运动组       8.2
16  运动组       5.7
17  运动组       8.9
18  运动组       8.7
19  运动组       6.7
20  控制组       6.3
21  控制组       5.2
22  控制组       9.0
23  控制组       5.0
24  控制组       7.5
25  控制组       6.3
26  控制组       6.0
27  控制组       5.2
28  控制组       7.1
29  控制组       7.4

4.1.2 对应的SPSS操作

为了适应使用不同语言的场景,我将同时呈现中文版和英文版
1.数据-重构
在这里插入图片描述
在这里插入图片描述

2.将选定变量重构为个案(C)
在这里插入图片描述
在这里插入图片描述

3.重构一个变量组
在这里插入图片描述
在这里插入图片描述

4.把数据列都放入目标变量中,个案组标识和固定变量可以先不管
在这里插入图片描述
在这里插入图片描述

5.这一步将各组名作为索引变量
在这里插入图片描述
在这里插入图片描述

6.选择使用变量名作为索引
在这里插入图片描述
在这里插入图片描述

7.之前那个序号没什么用,可以直接删除
在这里插入图片描述
在这里插入图片描述

8.完成即可
在这里插入图片描述
在这里插入图片描述

9.确定
在这里插入图片描述
在这里插入图片描述

10.可以看到新生成名为索引1的一列
在这里插入图片描述
在这里插入图片描述

11.点一下下面的变量视图,将索引1改成组别
在这里插入图片描述
在这里插入图片描述

12.再将组别排序,即可获得长数据
在这里插入图片描述
在这里插入图片描述

其实这样操作还不如直接在Excel里面操作,可能还方便一些,这里只是做个展示。

而且在SPSS中,如果使用“分析”-“比较平均值”下面的“单因素 ANOVA 检验…”,则不能使用字符串,如“正念组”这样,而是要转换成数字123之类的,变成组1组2组3,但是这样看起来不方便,输出结果也不好看。我们还可以使用“分析”-“一般线性模型”下的单变量,来达到方差分析的目的。

4.2 方差分析

4.2.1 Python代码

# 方差分析
def anova(melt_data):# ols()创建一线性回归分析模型model_ols = ols('%s~C(%s)' % (dependent, independent), melt_data).fit()# anova_lm()函数创建模型生成方差分析表anova_table = anova_lm(model_ols, typ=2)print("\n=================以下为方差分析表====================")print(anova_table)

Python输出结果:
在这里插入图片描述

4.2.2 SPSS操作
在这里插入图片描述
在这里插入图片描述

一般这里我们会按需要点击“图”、“事后比较”、“选项”这些来输出一些内容,比如描述统计、齐性检验,交互图什么的,不过这里暂时不需要,为了让输出纯粹一点,选好因变量和固定因子直接点确定即可。
在这里插入图片描述
在这里插入图片描述

SPSS输出结果:
中文版
在这里插入图片描述

英文版
在这里插入图片描述

4.3 事后比较

4.3.1 Python代码

# 事后比较
def multiple_comparisons(melt_data):# 进行事后比较分析print("\n=================事后比较分析结果====================")print(pairwise_tukeyhsd(melt_data[dependent], melt_data[independent]))

Python输出结果:
在这里插入图片描述

4.3.2 SPSS操作

在这里插入图片描述
在这里插入图片描述

选择事后比较
在这里插入图片描述
在这里插入图片描述

选择“图基(Tukey)”即可
在这里插入图片描述
在这里插入图片描述

然后点确定
在这里插入图片描述
在这里插入图片描述

SPSS输出结果:
在这里插入图片描述
在这里插入图片描述

这一步同时还会输出主体间因子 Between-Subjects Factors,齐性子集 Homogeneous Subsets和前面的主体间效应检验 Tests of Between-Subjects Effects,不过这不是重点,我们主要关注和代码对应的部分即可。

4.4 箱型图

4.4.1 Python代码

# 设置画图参数
def define_plt():plt.rcParams['font.sans-serif'] = ['SimHei', ]  # 设置汉字字体plt.rcParams['font.size'] = 12  # 字体大小plt.rcParams['axes.unicode_minus'] = False  # 正常显示负号# 显示箱型线,检查是否有极端数值
def show_boxplot(melt_data):sns.boxplot(x=independent, y=dependent, data=melt_data)plt.show()  # 需要放最后运行,否则会阻挡后面程序的运行

Python输出结果:
在这里插入图片描述

4.4.2 SPSS操作

在这里插入图片描述
在这里插入图片描述

由于这里我们只是想看一下箱型图,不想输出太多内容,所以左下角点击只显示图即可,如果还想输出正态性检验,Q-Q图之类的,可以按需要点击右侧的按钮设置选取。
在这里插入图片描述

在这里插入图片描述
SPSS输出结果:
在这里插入图片描述

END

这篇关于Python实现单因素方差分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/632136

相关文章

pandas中位数填充空值的实现示例

《pandas中位数填充空值的实现示例》中位数填充是一种简单而有效的方法,用于填充数据集中缺失的值,本文就来介绍一下pandas中位数填充空值的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是中位数填充?为什么选择中位数填充?示例数据结果分析完整代码总结在数据分析和机器学习过程中,处理缺失数

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾