操作系统原理:实验验证 Linux 内核的 CFS 算法

2024-01-22 05:08

本文主要是介绍操作系统原理:实验验证 Linux 内核的 CFS 算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CFS——一个“公平”的“骗局”

全称为 Completely fair scheduler(完全公平调度算法)。顾名思义,这个算法就是为了实现进程之间调度的“完全公平”。但是这个“公平”仅仅只是Linux对进程的一个虚假的“骗局”,是虚拟运行时间(vruntime)的相同,然而真实运行时间(runtime)是根据优先级权重而分配的。

优先级 n 的权重计算公式如下:
w e i g h t n = 1024 × 1.2 5 − n weight_{n}=1024 \times 1.25^{-n} weightn=1024×1.25n

优先级从 -20 到 20 的权重见下表:
优先级权重
进程真实运行时间(runtime)和虚拟运行时间(vruntime)的计算公式:
r u n t i m e + = T × ( w e i g h t ∑ w e i g h t ) runtime+=T \times (\frac{weight}{\sum weight} ) runtime+=T×(weightweight)
v r u n t i m e + = T × ( w e i g h t 0 ∑ w e i g h t ) vruntime+=T \times (\frac{weight_{0}}{\sum weight} ) vruntime+=T×(weightweight0)
对于上面的两个公式,其中weight即为表中的-20~20的优先级对应的40个权重。至于runtimevruntime的比值,由上面的两个公式可以得出应该与优先级所对应权重比值相等。那么在下面的实验中,我们就来验证一下这个结论。


设置进程优先级

首先使用CPU_ZERO(&curr_set)语句将CPU中所有的核设定清空,之后使用CPU_SET(0, &curr_set)语句将进程绑定到0号核。函数sched_getaffinity(pid_t pid, unsigned int cpusetsize, cpu_set_t *mask)会获得pid所指向的进程的CPU位掩码,并将该掩码返回到第三个参数mask所指向的结构中,即获得指定pid当前可以运行在哪些CPU上。如果pid的值为0,那么表示的是当前进程。

之后使用fork()语句创建子进程,因为子进程会继承父进程的处理器亲和性的绑定,所以在子进程中不需要再绑定处理器。此时子进程和父进程都绑定到了0号核上,去竞争CPU使用权。

在子进程和父进程中分别打印各自的进程编号,在子进程中打印从父进程中继承来的Nice值(进程优先级),之后使用setpriority(PRIO_PROCESS, getpid(), 10);语句将子进程的Nice值设置成10,并使用getpriority(PRIO_PROCESS, getpid())获取当前进程的优先级。最后让两个进程进入死循环,等待CPU运行时间的获取。

#include <stdio.h>
#ifndef __USE_GNU
#define __USE_GNU
#endif // !__USE_GNU
#include <unistd.h>
#include <sched.h>
#include <sys/resource.h>int main(int argc, char* argv[]) {cpu_set_t curr_set; CPU_ZERO(&curr_set);	//清空CPU设置CPU_SET(0, &curr_set);	//设置0号CPUsched_setaffinity(0, sizeof(curr_set), &curr_set);pid_t pid = fork();		//创建子进程if (pid == 0) {printf("The child pid: %d\n", getpid());	//显示子进程pid//sleep(3);//显示当前的进程优先级printf("\nParent and child's old priority: %d\n", getpriority(PRIO_PROCESS, getpid()));//将子进程的优先级改成10,并打印setpriority(PRIO_PROCESS, getpid(), 10);printf("Child's new priority: %d\n", getpriority(PRIO_PROCESS, getpid()));while (1);}else{printf("The parent pid: %d\n", getpid());	//显示父进程pidwhile (1);}
}

获取进程运行时间

首先使用命令行向Linux内核传参的方式获取两个进程号参数pid1pid2,使用module_param(pid1, int, S_IRUGO);语句将其注册为int类型的“只读”参数。

遍历进程列表,找到两个进程,并打印他们的真实运行时间(runtime)和虚拟运行时间(vruntime)。

#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/signal.h>int pid1;
int pid2;
module_param(pid1, int, S_IRUGO);
module_param(pid2, int, S_IRUGO);int module_load(void){struct task_struct* p;for_each_process(p) {if (p->pid == pid1 || p->pid == pid2)//打印进程的pid,运行时间,虚拟运行时间printk("%d  runtime:%llu \t vruntime:%lld\n", p->pid, p->se.sum_exec_runtime, p->se.vruntime);}return 0;
}
void module_rm(void){printk(KERN_INFO "========= Module removed! =========\n ");
}
module_init(module_load);
module_exit(module_rm);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("The runtime of progress.");
MODULE_AUTHOR("Song XJ");

运行结果

第一次的设置进程优先级
第一次获取进程运行时间

  • 进程运行时间比值:
    24573505223 ÷ 2321102474 = 10.587 24573505223 ÷ 2321102474=10.587 24573505223÷2321102474=10.587
  • 进程优先级权重比值:
    1024 ÷ 110 = 9.309 1024÷110=9.309 1024÷110=9.309

从上面的运行结果来看,这似乎误差有一点大啊。。。。【尴尬 ̄□ ̄||】
这逼装大了

我又检查了一下代码,整体上应该没有错误,但是运行了好几次都有比较大的误差,后来我想到在子进程中我加了一个sleep(3),本意是为了让子进程在等父进程打印完pid再进行之后的操作,但是恰恰是这三秒造成了实验结果的错误。

sleep(3)注释后重新进行实验,实验结果见下图,经过计算得出进程运行时间比为9.307,与优先级比值相似,在误差允许范围内。
27435976591 ÷ 2948160561 = 9.307 27435976591÷2948160561=9.307 27435976591÷2948160561=9.307

第二次进程优先级设置
第二次获取进程运行时间
同时又对第一次的实验结果进行修正分析,子进程减去sleep的3秒后进行比值计算,得出的结果也与优先级比值相似,证明确实是sleep造成的结果误差。
( 24573505223 - 3 × 1 0 9 ) ÷ 2321102474 = 9.295 (24573505223-3×10^9) ÷ 2321102474=9.295 (245735052233×109)÷2321102474=9.295

另外,从第二次的结果中vruntime的值和优先级为0时的值可以看出两个值在数量级上是相同的,比值约等于1,这也验证了 CFS 中虚拟运行时间的求法,即公式中的 w e i g h t 0 weight_0 weight0为优先级为0时的权重为1024。

这篇关于操作系统原理:实验验证 Linux 内核的 CFS 算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/631915

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Linux samba共享慢的原因及解决方案

《Linuxsamba共享慢的原因及解决方案》:本文主要介绍Linuxsamba共享慢的原因及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux samba共享慢原因及解决问题表现原因解决办法总结Linandroidux samba共享慢原因及解决

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.