使用Python和Echarts进行数据可视化分析:旅游景点销量和星级景点统计

本文主要是介绍使用Python和Echarts进行数据可视化分析:旅游景点销量和星级景点统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

##使用 Python 和 Echarts 进行数据可视化分析:以旅游景点销量和星级景点统计为例

基于全国各地区景点门票的售卖情况数据,分析全国热门景点分布和国民出游情况

(全国景点分布,国民假期出游分析及建议)

  1. 全国销量 Top20 的热门景点(热门景点);
  2. 全国各省市 4A、5A 景区数量(景点分布情况);
  3. 全国各省市假期出行数据在地图上的分布(出游分析及建议)。
import pandas as pd
from pyecharts.charts import Bar
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts
# 用pandas读取、导入数据集
data = pd.read_excel("./旅游景点.xlsx")
print(data[:5])

数据集内容如下:

   城市        名称   星级   评分     价格     销量       省/市/区                    坐标  \
0  上海   上海迪士尼乐园  NaN  0.0  325.0  19459  上海·上海·浦东新区  121.667917,31.149712
1  上海  上海海昌海洋公园   4A  0.0  276.5  19406  上海·上海·浦东新区  121.915647,30.917713
2  上海   上海野生动物园   5A  3.6  116.0   6764  上海·上海·浦东新区  121.728112,31.059636
3  上海      东方绿舟   4A  3.5   40.0   5353   上海·上海·青浦区  121.015977,31.107866
4  上海      东方明珠   5A  3.8   54.0   3966  上海·上海·浦东新区   121.50626,31.245369简介   是否免费                      具体地址
0         每个女孩都有一场迪士尼梦  False  上海市浦东新区川沙镇黄赵路310号上海迪士尼乐园
1   看珍稀海洋生物 | 玩超刺激娱乐项目  False         上海市浦东新区南汇城银飞路166号
2  全球动物聚集地 | 零距离和动物做朋友  False           上海市浦东新区南六公路178号
3     全国首屈一指的青少年校外教育营地  False          上海市青浦区沪青平公路6888号
4       感受云端漫步,品味老上海风情  False             上海市浦东新区世纪大道1号
# 销量Top20的热门景点
# 先将数据集按照销量多少进行排序 sort_values()
data_sale = data.sort_values(by="销量", ascending=False)
# print(data_sale[:20])
print(list(data_sale["名称"])[:20])
print(data_sale["销量"].values.tolist()[:20])
Sale = (Bar().add_xaxis(list(data_sale["名称"])[:20]).add_yaxis("销量", data_sale["销量"].values.tolist()[:20])#.set_global_opts(title_opts=opts.TitleOpts(title="全国销量Top20的景点", pos_top="4%", pos_left="40%"),# xaxis_opts=opts.AxisOpts(name="景点名称",#                          splitline_opts=opts.SplitLineOpts(is_show=True)),xaxis_opts=opts.AxisOpts(name="省市",axislabel_opts=opts.LabelOpts(interval=0, rotate=20),splitline_opts=opts.SplitLineOpts(is_show=True),),yaxis_opts=opts.AxisOpts(name="销量"),legend_opts=opts.LegendOpts(pos_left="80%", pos_top="20%"),).set_series_opts(label_opts=opts.LabelOpts(position="top"))# 生成.render("Top20销量.html")
)
['上海迪士尼乐园', '上海海昌海洋公园', '故宫', '秦始皇帝陵博物院(兵马俑)', '成都大熊猫繁育研究基地', '颐和园', '八达岭长城', '长隆野生动物世界', '上海野生动物园', '珠海长隆海洋王国', '七彩云南欢乐世界', '瘦西湖', '南京总统府', '华山景区', '华清宫', '北京野生动物园', '东方绿舟', '天坛公园', '恭王府', '长恨歌']
[19459, 19406, 15277, 12714, 9731, 9633, 9618, 8891, 6764, 6545, 6468, 6005, 5920, 5808, 5702, 5498, 5353, 5300, 5260, 5195]

绘图展示:
在这里插入图片描述

# 先从数据中提取出4A、5A星级的景点
data_rank = data[data["星级"].isin(["4A", "5A"])]
print(data_rank[:5])
# 统计各省市的星级景点数量
count = data_rank.groupby("城市").count()["星级"]print(count[:5])
Rank = (Bar().add_xaxis(count.index.values.tolist()).add_yaxis("4A, 5A级景点数量", count.values.tolist()).set_global_opts(title_opts=opts.TitleOpts(title="各省市4A-5A景区数量", pos_left="40%"),xaxis_opts=opts.AxisOpts(name="省市",axislabel_opts=opts.LabelOpts(interval=0, rotate=35),splitline_opts=opts.SplitLineOpts(is_show=True),),yaxis_opts=opts.AxisOpts(name="数量"),legend_opts=opts.LegendOpts(pos_left="80%", pos_top="15%"),).render("各省市4A-5A景区数量.html")
)
   城市        名称  星级   评分     价格     销量       省/市/区                    坐标  \
1  上海  上海海昌海洋公园  4A  0.0  276.5  19406  上海·上海·浦东新区  121.915647,30.917713
2  上海   上海野生动物园  5A  3.6  116.0   6764  上海·上海·浦东新区  121.728112,31.059636
3  上海      东方绿舟  4A  3.5   40.0   5353   上海·上海·青浦区  121.015977,31.107866
4  上海      东方明珠  5A  3.8   54.0   3966  上海·上海·浦东新区   121.50626,31.245369
7  上海     上海科技馆  5A  3.7   45.0   2120  上海·上海·浦东新区   121.54785,31.224219简介   是否免费                          具体地址
1   看珍稀海洋生物 | 玩超刺激娱乐项目  False             上海市浦东新区南汇城银飞路166号
2  全球动物聚集地 | 零距离和动物做朋友  False               上海市浦东新区南六公路178号
3     全国首屈一指的青少年校外教育营地  False              上海市青浦区沪青平公路6888号
4       感受云端漫步,品味老上海风情  False                 上海市浦东新区世纪大道1号
7    魔都科普教育殿堂 | 周末遛娃圣地  False  上海市浦东新区世纪大道2000号(近二号线上海科技馆站)
城市
上海     25
云南     31
内蒙古    23
北京     38
吉林     10
Name: 星级, dtype: int64

绘图展示:在这里插入图片描述

# 合并生成的两个html中的表格
# 可以不进行合并
with open("Top20销量.html", "r", encoding="utf-8") as f1:html1 = f1.read()with open("各省市4A-5A景区数量.html", "r", encoding="utf-8") as f2:html2 = f2.read()final_html = html1 + html2with open("final.html", "w", encoding="utf-8") as f:f.write(final_html)
# 全国各省市假期出行数据在地图上的分布
data_city = data[["城市", "销量"]]
print(data_city[:5])
# 对各省市销量累加求和
city_cnt = data_city.groupby("城市").sum()["销量"]
print(city_cnt[:5])
city_list = city_cnt.index.tolist()
sale_list = city_cnt.values.tolist()
print(city_list)
print(sale_list)namemap = {"黑龙江省": "黑龙江","吉林省": "吉林","辽宁省": "辽宁","北京市": "北京","天津市": "天津","河北省": "河北","山西省": "山西","内蒙古自治区": "内蒙古","上海市": "上海","江苏省": "江苏","山东省": "山东","浙江省": "浙江","安徽省": "安徽","江西省": "江西","福建省": "福建","广东省": "广东","澳门特别行政区": "澳门","台湾省": "台湾","香港特别行政区": "香港","西藏自治区": "西藏","广西壮族自治区": "广西","海南省": "海南","河南省": "河南","湖北省": "湖北","湖南省": "湖南","陕西省": "陕西","新疆维吾尔自治区": "新疆","宁夏回族自治区": "宁夏","甘肃省": "甘肃","青海省": "青海","重庆市": "重庆","四川省": "四川","贵州省": "贵州","云南省": "云南",
}c = (Map()# 添加中国地图.add("旅游景点", [list(z) for z in zip(city_list, sale_list)], "china", name_map=namemap).set_global_opts(title_opts=opts.TitleOpts(title="全国各省市假期出行数据在地图上的分布", pos_left="30%"),legend_opts=opts.LegendOpts(pos_top="10%", pos_left="70%"),visualmap_opts=opts.VisualMapOpts(min_=1000, max_=100000, is_piecewise=True),).render("全国各省市假期出行数据在地图上的分布.html")
)
   城市     销量
0  上海  19459
1  上海  19406
2  上海   6764
3  上海   5353
4  上海   3966
城市
上海     84084
云南     28056
内蒙古     3959
北京     93987
台湾      1001
Name: 销量, dtype: int64
['上海', '云南', '内蒙古', '北京', '台湾', '吉林', '四川', '天津', '宁夏', '安徽', '山东', '山西', '广东', '广西', '新疆', '江苏', '江西', '河北', '河南', '浙江', '海南', '湖北', '湖南', '澳门', '甘肃', '福建', '西藏', '贵州', '辽宁', '重庆', '陕西', '青海', '香港', '黑龙江']
[84084, 28056, 3959, 93987, 1001, 3772, 65052, 5254, 5622, 21027, 32147, 15904, 62757, 37946, 3614, 80783, 11046, 6826, 33776, 45481, 44123, 22563, 6980, 3128, 4338, 23256, 7028, 22499, 10423, 20054, 64353, 4591, 1006, 4639]

绘图展示:
在这里插入图片描述

echarts 官方文档

这篇关于使用Python和Echarts进行数据可视化分析:旅游景点销量和星级景点统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/629326

相关文章

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合