室温超导“反转”又起!东南大学观测 LK-99 零电阻成功,但非室温、不抗磁

2024-01-21 04:50

本文主要是介绍室温超导“反转”又起!东南大学观测 LK-99 零电阻成功,但非室温、不抗磁,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

27429122b062368385e4a6453c625831.gif

整理 | 郑丽媛

出品 | CSDN(ID:CSDNnews)

自上周韩国量子能源研究中心研究团队在 ArXiv 平台上发布两篇论文,声称发现了世界首个常压室温超导体 “LK-99” 后,整个科技领域都沸腾了。

全球范围内掀起了一股复现「室温常压超导体」的热潮,更有多个实验室已公开复现进度与成果:

▶ 8 月 1 号,美国劳伦斯伯克利国家实验室(LBNL)用大型计算机对 LK-99 进行了模拟计算,表明从理论上来说,该材料结构想要实现常温超导是完全可行的,但合成难度非常大。

▶ 同一天,中国华中科技大学材料学院成功首次验证合成了可以磁悬浮的 LK-99 晶体,但由于样品尺寸较小(仅几十微米),目前只验证了迈斯纳效应,团队将继续制作新样品以测量电阻。

▶ 8 月 2 日晚上,曲阜师范大学也公布了复现韩国室温超导体实验的结果:无零电阻特性。该大学物理工程学院教授刘晓兵表示,其团队利用四引线法对此前合成的抗磁样品进行了初步的电阻测试,测试结果发现该样品在常温到 50K(-223.16℃)低温范围内仍存在大的电阻值,测试过程中并没有出现电阻大幅度骤降或者零电阻,与“室温超导”的零电阻特性相差甚远。

不曾想,曲阜师范大学声称 LK-99 “无零电阻特性”还不到几个小时,东南大学就给出了一个截然相反的观测结果:

8 月 3 日凌晨 1 点 12 分,东南大学物理学院孙悦教授在 B 站发布视频,表明其团队在 110K(-163°C)温度以下的常压条件下,成功观测到了 LK-99 零电阻。

facc5a66871e248cceb18a7bb43431bb.png

截至发稿,这则视频在 B 站的播放量已突破 200 万,并被转发至推特、HN 等各大国外平台,又一次掀起了全球网友的讨论热潮。

60623e2b02c633f13dec194278a7f847.png

556ee732fc31fea8968f6215a2b9a6a4.png

样品纯度更高

在视频开头,孙悦教授就强调了一件至关重要的事实:“我们并没有证实、也没有发现室温超导。”

对于团队在 110K 以下成功观测到零电阻这件事,孙悦认为,这可能是 LK-99 “存在超导性的一个重要证据”。基于这个观测结果,孙悦团队已将其写成文章,并发布到了 ArXiv 平台上(论文地址:https://arxiv.org/ftp/arxiv/papers/2308/2308.01192.pdf)。

2bfc696ea0ba41c76666b47f6d26bd63.png

从论文作者署名来看,这项工作主要由侯强、魏伟、周鑫这三名学生,以及孙悦教授和施智祥教授共同完成。

在正式观测 LK-99 之前,该团队对两种前驱物(Cu3P 和 Pb2(SO4)O)进行了 X 射线衍射。为了研究前驱体比例对最终产物的影响,团队制备了四种样品并也对其进行 X 射线衍射。

c4e921a5949d38796397198c1ea3a349.png

为验证 LK-99 的成功合成,团队将四个样品的 X 射线衍射与韩国团队在论文中给出的 LK-99 X 射线进行了对比,其中样品 S1 的 X 射线与其高度吻合。孙悦教授表示,其团队合成的样品纯度还更高:样品 Cu2S 的峰很小,比韩国样品“还要更加纯净一点”。

3252e613568906c5ebe8f09474754ccd.png

ce1a1467214d4ec96cbf12ec4128e1f1.png

观测到样品的零电阻现象

得到成功合成的样品后,由于其本身材质较脆,很难把它弄成一个规则的形状,也为了节省时间,团队直接就着不规则形状的样品进行电阻测试。

根据孙悦教授的说法,他们从 300K(26.85℃)开始往低温测样品电阻,并且与曲阜师范大学团队一样采用的是四引线法,通的电流为 1mA,结果显示:“我们可以看到在 1mA 的电流下,样品电阻率在高温下有一点半导体行为,然后随着温度降低而降低。最关键是我们在 110K 时,可以看到它的电阻基本上降到了 0。”

4fa3db322ae966bbfb5ba3e3215be9a3.png

对于零电阻的说法,孙悦教授解释道:在 110K 时,样品的电阻大概在 10^-5到 10^-6 欧姆,通的电流又是 1mA,这就说明电压值在 10^-8 或 10^-9 伏特,这已经是测量仪器的极限,所以团队认为他们“观测到了零电阻”。

不过孙悦教授也提到,样品在 250K 左右出现了一个“很奇怪的电阻率下降”现象,具体原因尚未明确,孙悦教授猜测有可能是“电极做的不是很干净”。

此外,团队还加了磁场对样品的超导转变进行了测量,结果显示样品在磁场下的超导转变比较稳定,但也有一些比较“奇怪”的现象:“我们可以看到在低场的时候,随着磁场增加,样品的超导转变区域跟往低温去走。但在 9 特斯拉和 7 特斯拉时,不知道为什么又回来了一点,我们并不知道它的原因。”

198598367c1887befe82d4b67cdb5ff9.png

a5295aa0e52c4367814c50217d541968.png

这并不是室温超导的证据”

在 B 站视频中,孙悦教授还补充了一些实验细节:实际上,其团队在 8 月 1 号下午就观测到了类似于超导转变的电阻陡降行为,但当时电阻还不到 0,于是他们又加紧挑选样品,最后共测试了 6 片样品,但“只在其中一片样品中观测到了零电阻,其他样品大多产生的是半导体行为”。

对于这块观测到零电阻的样品,团队对其做了迈斯纳效应测试,即完全抗磁性测量,结果并未在该样品上观测到完全抗磁性。对此,团队猜测:如果零电阻现象是超导造成的话,那么没有完全抗磁性可能是因为该样品的超导成分还比较低。

正如孙悦教授在视频开头所说,其团队在 LK-99 材料下观测到 110K 以下的零电阻,“这并不是室温超导的证据”,毕竟 110K 是 -163°C,远不到“室温”的水平。包括在论文中,该团队也只是说:“我们的发现表明,Pb10-xCux(PO4)6O 有可能成为高温超导体的候选材料。”

不过在视频最后,孙悦教授仍积极表示:“LK-99 是否有室温超导,我们还有待进一步的探索和测量,我们团队还会继续在这方面努力,希望有更好的结果向大家汇报。”

13e0284a0e552f383ba5bd403a81b5f8.png

积极支持 & 质疑否定

对于东南大学超导团队“首测 LK-99 零电阻成功”的结果,科技领域对其的看法褒贬不一,在各方观点的碰撞下,大致分为了两种:积极支持 & 质疑否定。

积极支持派:

华南理工大学“洗芝溪”认为:“110K 不可能是最终落点。后续通过调整合成工艺,大幅提升转变温度是完全可能的”,“不管怎样,这已经是非常非常振奋人心的结果”。

北京科技大学“陈博微博”认为:“110K 零电阻实验结果,至少有一个新的证据,证明这个体系是高温超导,至少是高温超导”,“110K 零电阻被首次看到,至少说明并不是只有氢化物才能高温,不是只有高压才超导,真正的意义是,并不是只有高声子频率起决定性作用。”

质疑否定派:

京都大学固体量子物性研究实验室,对东南大学得出的 110K 零电阻的结论进行了分析,认为其 110K 零电阻的数据存在问题。该分析还得到了美国马里兰大学凝聚态物质理论中心(CMTC)的认同:“东南大学可能误画了他们的数字。从线性比例上看,似乎没有过渡,这非常令人失望。”

d01e367e402cb872fe96dbe56c885568.png

知乎科研领域知名答主“要淡定”表示:“其实比较遗憾。东南大学的这项成果我认为是给李石培等的宣称的‘室温常压超导’钉上了棺材板的最后一颗钉子。”

除此之外,今天下午韩国超导低温学会 LK-99 验证委员会也最新表示:韩国量子能源研究中心研究团队开发的“LK-99”不足以证明是室温超导体,因为在与 LK-99 相关的视频和论文中,并没有出现迈斯纳效应。验证委员会解释道,韩国研究团队所展示 LK-99 漂浮在磁铁上的视频,远未达到固定磁通量的效果,论文数据也与一般的超导图不同。

那么,对于 LK-99 你又有什么看法,你认为它可能会是室温超导体吗?

参考链接:

https://www.bilibili.com/video/BV1pM4y1p7u5/

https://www.zhihu.com/question/615351418

https://arxiv.org/ftp/arxiv/papers/2308/2308.01192.pdf

推荐阅读:

▶全球 PC 卖不动,Windows 下滑 12%……近 18 万亿市值的微软,全靠 OpenAI 撑着?

▶VIMA:更适合机械宝宝体质的操作系统,竟然内置LLM!

▶室温超导真要来了?一文读懂来龙去脉

粉丝福利:

e6db22c1725486f2b799a13fb977dea7.png

这篇关于室温超导“反转”又起!东南大学观测 LK-99 零电阻成功,但非室温、不抗磁的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/628409

相关文章

控制反转 的种类

之前对控制反转的定义和解释都不是很清晰。最近翻书发现在《Pro Spring 5》(免费电子版在文章最后)有一段非常不错的解释。记录一下,有道翻译贴出来方便查看。如有请直接跳过中文,看后面的原文。 控制反转的类型 控制反转的类型您可能想知道为什么有两种类型的IoC,以及为什么这些类型被进一步划分为不同的实现。这个问题似乎没有明确的答案;当然,不同的类型提供了一定程度的灵活性,但

图解可观测Metrics, tracing, and logging

最近在看Gophercon大会PPT的时候无意中看到了关于Metrics,Tracing和Logging相关的一篇文章,凑巧这些我基本都接触过,也是去年后半年到现在一直在做和研究的东西。从去年的关于Metrics的goappmonitor,到今年在排查问题时脑洞的基于log全链路(Tracing)追踪系统的设计,正好是对这三个话题的实践。这不禁让我对它们的关系进行思考:Metrics和Loggi

我成功在本地打开了Cesium啦!

1首先下载Node.js,我是跟着这篇下载的,https://zhuanlan.zhihu.com/p/77594251,不过这后面的我没弄对Cesium环境配置也没影响。 另外:我看其他推文说,在终端写node -v和npm-v查node和npm的版本可以检测node和npm是否下载成功。 2然后我在CesiumB站官号看的教学视频,跟着下载Cesium源代码。 Cesium基础入门1-零

Android三方登录,微信登录成功后闪屏问题

最近项目要加一个微信登录的功能,发现登录成功后进入WXEntryActivity界面,这个界面是微信来处理接受登录,分享等结果的。关闭的时候this.finish();界面闪烁,虽然不影响功能,但看起来狠辣眼,然后我就想是不是主题的原因,我索性将这个界面的主题设置为透明的 <activity android:name=".wxapi.WXEntryActivity"android:label="

MapReduce算法 – 反转排序(Order Inversion)

译者注:在刚开始翻译的时候,我将Order Inversion按照字面意思翻译成“反序”或者“倒序”,但是翻译完整篇文章之后,我感觉到,将Order Inversion翻译成反序模式是不恰当的,根据本文的内容,很显然,Inversion并非是将顺序倒排的意思,而是如同Spring的IOC一样,表明的是一种控制权的反转。Spring将对象的实例化责任从业务代码反转给了框架,而在本文的模式中,在map

解决解压缩时的错误提示 “无法成功完成操作, 因为文件包含病毒或者潜在垃圾文件“

近期, 有一些朋友反馈在解压zip压缩包, 或者在安装软件的过程中出现了下面的错误提示: "无法成功完成操作, 因为文件包含病毒或者潜在垃圾文件" "Operation did not complete successfully because the file contains a virus or potentially unwanted software" 上述错误一般

【LeetCode】07.整数反转

题目要求 解题思路 这道题的难点在于怎么判断越界,我们无法直接与最大值或最小值比较,但是由于每一次我们的ret都需要乘10这个特性来使用ret与最大值或最小值除10进行比较 代码实现 class Solution {public:int reverse(int x) {int ret=0;while(x){//处理越界情况if(ret<INT_MIN/10||ret>INT_MAX

工业三相电机的反转

反转旋转:简单方法 对于只需要单向运转的电机,直接的解决方案是反转来自电源的两根物理输入线。实际上,这正是逆变器和反向启动器内部发生的事情,但它都隐藏在“引擎盖下”。 但这究竟是如何实现的呢?为什么反转几根电线会对大型电机产生如此大的影响呢? 请务必参考电机制造商的说明,确保正确反转。并非所有电机都有相同的要求,但大多数三相电机都遵循相同的原理运行。 三相电机基础知识 在本文中,我们将仅

成功进行云迁移与现代化的7个关键步骤

随着全球逐渐从供应链噩梦和因封锁及控制措施引起的通胀急剧上升中恢复正常,一个显而易见的问题是:运营成本必须降低。 但这不仅仅是成本问题;商业领袖还必须准备好增加股东价值,并为客户和目标市场提供最优价值。尽管实现这一目标的方法有很多,但没有一种方法能在云迁移的所有三个方面达到这种效果。 然而,云迁移和现代化的实施部分往往充满挑战,这些挑战可能迅速逆转甚至阻碍任何已经实现的收益。以下是七个成功的云

代码随想录算法训练营Day03 | 链表理论基础、203.移除链表元素 、707.设计链表、206.反转链表

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 链表理论基础203.移除链表元素思路与重点 707.设计链表思路与重点 206.反转链表思路与重点 链表理论基础 C/C++的定义链表节点方式: // 单链表struct ListNode {int val; // 节点上存储的元素ListNode *next; // 指向下一个节点的指