图像分割实战-系列教程15:deeplabV3+ VOC分割实战3-------网络结构1

2024-01-21 01:20

本文主要是介绍图像分割实战-系列教程15:deeplabV3+ VOC分割实战3-------网络结构1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

🍁🍁🍁图像分割实战-系列教程 总目录

有任何问题欢迎在下面留言
本篇文章的代码运行界面均在Pycharm中进行
本篇文章配套的代码资源已经上传

deeplab系列算法概述
deeplabV3+ VOC分割实战1
deeplabV3+ VOC分割实战2
deeplabV3+ VOC分割实战3
deeplabV3+ VOC分割实战4
deeplabV3+ VOC分割实战5

本项目的网络结构在network文件夹中,主要在modeling.py和_deeplab.py中:
modeling.py:指定要用的骨干网络是什么
_deeplab.py:根据modeling.py指定的骨干网络构建实际的网络结构

5、modeling.py的 _segm_resnet函数

def _segm_resnet(name, backbone_name, num_classes, output_stride, pretrained_backbone):if output_stride==8:replace_stride_with_dilation=[False, True, True]aspp_dilate = [12, 24, 36]else:replace_stride_with_dilation=[False, False, True]aspp_dilate = [6, 12, 18]
  • 如果输出步长为8,则
  • 替换步长用膨胀率,如果为None,设置默认值为[False, False, False],表示不使用空洞卷积,通过使用空洞卷积替代增加步长的标准卷积
  • 膨胀率为[12, 24, 36],用于调整空洞卷积
  • 如果输出步长不是8,则设置另外的参数
    backbone = resnet.__dict__[backbone_name](pretrained=pretrained_backbone, replace_stride_with_dilation=replace_stride_with_dilation)inplanes = 2048low_level_planes = 256
  • 使用指定的ResNet版本构建backbone
  • resnet.__dict__是一个指向不同ResNet模型的字典
  • pretrained=pretrained_backbone指定是否加载预训练权重
  • replace_stride_with_dilation用于控制网络中卷积层的步长和膨胀
  • inplanes = 2048:设置网络最后一层的通道数
  • low_level_planes = 256:设置低层特征的通道数
    if name=='deeplabv3plus':return_layers = {'layer4': 'out', 'layer1': 'low_level'}#classifier = DeepLabHeadV3Plus(inplanes, low_level_planes, num_classes, aspp_dilate)elif name=='deeplabv3':return_layers = {'layer4': 'out'}classifier = DeepLabHead(inplanes , num_classes, aspp_dilate)# 提取网络的第几层输出结果并给一个别名backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)model = DeepLabV3(backbone, classifier)return model
  • return_layers 是一个字典,定义返回层,这个键值不用管,out对应的是带有高维度特征的输出对应的是比较大的物体的分割,low_level即小物体
  • classifier 初始化分类器,inplanes 传入分类器的特征通道数, low_level_planes 是低层特征的通道数,num_classes 是目标分类的类别数,aspp_dilate 是ASPP模块中使用的膨胀率
  • IntermediateLayerGetter(backbone, return_layers=return_layers),这里的backbone是之前定义的基础网络如resnet,return_layers定义了要从哪些层输出,IntermediateLayerGetter使得我们可以在后续的网络部分中使用这些特定层的输出进行进一步的处理和特征融合,最后得到修改后的backbone
  • model = DeepLabV3(backbone, classifier)使用修改后的backbone 和定义好的classifier构建DeepLabHeadV3Plus模型

6、_deeplab.py的 DeepLabHeadV3Plus类

在前面的_segm_resnet函数我们调用了DeepLabHeadV3Plus类来构建我们的网络,这部分介绍一下DeepLabHeadV3Plus类

6.1 构造函数

class DeepLabHeadV3Plus(nn.Module):def __init__(self, in_channels, low_level_channels, num_classes, aspp_dilate=[12, 24, 36]):super(DeepLabHeadV3Plus, self).__init__()self.project = nn.Sequential( nn.Conv2d(low_level_channels, 48, 1, bias=False),nn.BatchNorm2d(48),nn.ReLU(inplace=True),)self.aspp = ASPP(in_channels, aspp_dilate)self.classifier = nn.Sequential(nn.Conv2d(304, 256, 3, padding=1, bias=False),nn.BatchNorm2d(256),nn.ReLU(inplace=True),nn.Conv2d(256, num_classes, 1))self._init_weight()
  1. self.project,定义一个执行序列,包含一个二维卷积、一个批归一化、一个ReLU激活
  2. self.aspp,调用ASPP类初始化一个对象
  3. self.classifier,定义一个执行序列包含一个二维卷积、一个批归一化、一个ReLU激活、一个二维卷积
  4. self._init_weight(),调用此类中一个函数,这个函数主要用于初始化权重

6.2 前向传播函数

在这里插入图片描述

    def forward(self, feature):low_level_feature = self.project( feature['low_level'] )#return_layers = {'layer4': 'out', 'layer1': 'low_level'}output_feature = self.aspp(feature['out'])output_feature = F.interpolate(output_feature, size=low_level_feature.shape[2:], mode='bilinear', align_corners=False)return self.classifier( torch.cat( [ low_level_feature, output_feature ], dim=1 ) )
  1. 前向传播函数
  2. 从前面的定义中获取低纬度的特征,再经过一个卷积、归一化、激活的执行序列也就是1*1的卷积,得到最终的low_level_feature
  3. 从前面的定义中获取高纬度的特征,经过一个ASPP特征提取网络,得到最终的output_feature
  4. 使用双线性插值调整output_feature 匹配low_level_feature 的维度
  5. 最后将output_feature 与low_level_feature 拼接后再经过一个分类器执行序列,得到最终DeepLabHeadV3Plus类的输出特征

6.3 def _init_weight(self):函数

    def _init_weight(self):for m in self.modules():if isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight)elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):nn.init.constant_(m.weight, 1)nn.init.constant_(m.bias, 0)
  1. 初始化权重函数
  2. 遍历模型 DeepLabHeadV3Plus 中的所有层
  3. 如果当前这个层是卷积层,则:
  4. 使用Kaiming初始化
  5. 如果是批量标准化(BatchNorm)或组标准化(GroupNorm)层,则:
  6. 将这些层的权重初始化为1
  7. 将这些层的偏置初始化为0

deeplab系列算法概述
deeplabV3+ VOC分割实战1
deeplabV3+ VOC分割实战2
deeplabV3+ VOC分割实战3
deeplabV3+ VOC分割实战4
deeplabV3+ VOC分割实战5

这篇关于图像分割实战-系列教程15:deeplabV3+ VOC分割实战3-------网络结构1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/627959

相关文章

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2