求求你们了,MyBatis 批量插入别再乱用 foreach 了,5000 条数据花了 14 分钟。。...

2024-01-20 18:59

本文主要是介绍求求你们了,MyBatis 批量插入别再乱用 foreach 了,5000 条数据花了 14 分钟。。...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“芋道源码”,选择“设为星标”

管她前浪,还是后浪?

能浪的浪,才是好浪!

每天 10:33 更新文章,每天掉亿点点头发...

源码精品专栏

 
  • 原创 | Java 2021 超神之路,很肝~

  • 中文详细注释的开源项目

  • RPC 框架 Dubbo 源码解析

  • 网络应用框架 Netty 源码解析

  • 消息中间件 RocketMQ 源码解析

  • 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析

  • 作业调度中间件 Elastic-Job 源码解析

  • 分布式事务中间件 TCC-Transaction 源码解析

  • Eureka 和 Hystrix 源码解析

  • Java 并发源码

来源:blog.csdn.net/huanghanqian/

article/details/83177178/

10322e59ab5bb46e89935f55e98bb39b.jpeg


近日,项目中有一个耗时较长的Job存在CPU占用过高的问题,经排查发现,主要时间消耗在往MyBatis中批量插入数据。mapper configuration是用foreach循环做的,差不多是这样。(由于项目保密,以下代码均为自己手写的demo代码)

<insert id="batchInsert" parameterType="java.util.List">insert into USER (id, name) values<foreach collection="list" item="model" index="index" separator=","> (#{model.id}, #{model.name})</foreach>
</insert>

这个方法提升批量插入速度的原理是,将传统的:

INSERT INTO `table1` (`field1`, `field2`) VALUES ("data1", "data2");
INSERT INTO `table1` (`field1`, `field2`) VALUES ("data1", "data2");
INSERT INTO `table1` (`field1`, `field2`) VALUES ("data1", "data2");
INSERT INTO `table1` (`field1`, `field2`) VALUES ("data1", "data2");
INSERT INTO `table1` (`field1`, `field2`) VALUES ("data1", "data2");

转化为:

INSERT INTO `table1` (`field1`, `field2`) 
VALUES ("data1", "data2"),
("data1", "data2"),
("data1", "data2"),
("data1", "data2"),
("data1", "data2");

在MySql Docs中也提到过这个trick,如果要优化插入速度时,可以将许多小型操作组合到一个大型操作中。理想情况下,这样可以在单个连接中一次性发送许多新行的数据,并将所有索引更新和一致性检查延迟到最后才进行。

乍看上去这个foreach没有问题,但是经过项目实践发现,当表的列数较多(20+),以及一次性插入的行数较多(5000+)时,整个插入的耗时十分漫长,达到了14分钟,这是不能忍的。在资料中也提到了一句话:

Of course don't combine ALL of them, if the amount is HUGE. Say you have 1000 rows you need to insert, then don't do it one at a time. You shouldn't equally try to have all 1000 rows in a single query. Instead break it into smaller sizes.

它强调,当插入数量很多时,不能一次性全放在一条语句里。可是为什么不能放在同一条语句里呢?这条语句为什么会耗时这么久呢?我查阅了资料发现:

Insert inside Mybatis foreach is not batch, this is a single (could become giant) SQL statement and that brings drawbacks:

  • some database such as Oracle here does not support.

  • in relevant cases: there will be a large number of records to insert and the database configured limit (by default around 2000 parameters per statement) will be hit, and eventually possibly DB stack error if the statement itself become too large.

Iteration over the collection must not be done in the mybatis XML. Just execute a simple Insertstatement in a Java Foreach loop. The most important thing is the session Executor type.

SqlSession session = sessionFactory.openSession(ExecutorType.BATCH);
for (Model model : list) {session.insert("insertStatement", model);
}
session.flushStatements();

Unlike default ExecutorType.SIMPLE, the statement will be prepared once and executed for each record to insert.

从资料中可知,默认执行器类型为Simple,会为每个语句创建一个新的预处理语句,也就是创建一个PreparedStatement对象。在我们的项目中,会不停地使用批量插入这个方法,而因为MyBatis对于含有<foreach>的语句,无法采用缓存,那么在每次调用方法时,都会重新解析sql语句。

Internally, it still generates the same single insert statement with many placeholders as the JDBC code above.

MyBatis has an ability to cache PreparedStatement, but this statement cannot be cached because it contains <foreach /> element and the statement varies depending on the parameters. As a result, MyBatis has to 1) evaluate the foreach part and 2) parse the statement string to build parameter mapping [1] on every execution of this statement.

And these steps are relatively costly process when the statement string is big and contains many placeholders.

[1] simply put, it is a mapping between placeholders and the parameters.

从上述资料可知,耗时就耗在,由于我foreach后有5000+个values,所以这个PreparedStatement特别长,包含了很多占位符,对于占位符和参数的映射尤其耗时。并且,查阅相关资料可知,values的增长与所需的解析时间,是呈指数型增长的。

e269a164dbeb3653706114b46f389e47.png

所以,如果非要使用 foreach 的方式来进行批量插入的话,可以考虑减少一条 insert 语句中 values 的个数,最好能达到上面曲线的最底部的值,使速度最快。一般按经验来说,一次性插20~50行数量是比较合适的,时间消耗也能接受。

重点来了。上面讲的是,如果非要用<foreach>的方式来插入,可以提升性能的方式。而实际上,MyBatis文档中写批量插入的时候,是推荐使用另外一种方法。(可以看 http://www.mybatis.org/mybatis-dynamic-sql/docs/insert.html 中 Batch Insert Support 标题里的内容)

SqlSession session = sqlSessionFactory.openSession(ExecutorType.BATCH);
try {SimpleTableMapper mapper = session.getMapper(SimpleTableMapper.class);List<SimpleTableRecord> records = getRecordsToInsert(); // not shownBatchInsert<SimpleTableRecord> batchInsert = insert(records).into(simpleTable).map(id).toProperty("id").map(firstName).toProperty("firstName").map(lastName).toProperty("lastName").map(birthDate).toProperty("birthDate").map(employed).toProperty("employed").map(occupation).toProperty("occupation").build().render(RenderingStrategy.MYBATIS3);batchInsert.insertStatements().stream().forEach(mapper::insert);session.commit();
} finally {session.close();
}

即基本思想是将 MyBatis session 的 executor type 设为 Batch ,然后多次执行插入语句。就类似于JDBC的下面语句一样。

Connection connection = DriverManager.getConnection("jdbc:mysql://127.0.0.1:3306/mydb?useUnicode=true&characterEncoding=UTF-8&useServerPrepStmts=false&rewriteBatchedStatements=true","root","root");
connection.setAutoCommit(false);
PreparedStatement ps = connection.prepareStatement("insert into tb_user (name) values(?)");
for (int i = 0; i < stuNum; i++) {ps.setString(1,name);ps.addBatch();
}
ps.executeBatch();
connection.commit();
connection.close();

经过试验,使用了 ExecutorType.BATCH 的插入方式,性能显著提升,不到 2s 便能全部插入完成。

总结一下,如果MyBatis需要进行批量插入,推荐使用 ExecutorType.BATCH 的插入方式,如果非要使用 <foreach>的插入的话,需要将每次插入的记录控制在 20~50 左右。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://github.com/YunaiV/ruoyi-vue-pro

  • 视频教程:https://doc.iocoder.cn/video/

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://github.com/YunaiV/yudao-cloud

  • 视频教程:https://doc.iocoder.cn/video/



欢迎加入我的知识星球,一起探讨架构,交流源码。加入方式,长按下方二维码噢

368c0f218ff203a8c984d148a6245438.png

已在知识星球更新源码解析如下:

5a02e61ee7f7c9ac6dee62b1f46f5f3b.jpeg

d0940dcd20dcdd7b42635f0c5c96dea6.jpeg

7b4d2f7e56a1f230532356b671905293.jpeg

34d148934c17dbf905dac19dea3b8d05.jpeg

最近更新《芋道 SpringBoot 2.X 入门》系列,已经 101 余篇,覆盖了 MyBatis、Redis、MongoDB、ES、分库分表、读写分离、SpringMVC、Webflux、权限、WebSocket、Dubbo、RabbitMQ、RocketMQ、Kafka、性能测试等等内容。

提供近 3W 行代码的 SpringBoot 示例,以及超 4W 行代码的电商微服务项目。

获取方式:点“在看”,关注公众号并回复 666 领取,更多内容陆续奉上。

文章有帮助的话,在看,转发吧。
谢谢支持哟 (*^__^*)

这篇关于求求你们了,MyBatis 批量插入别再乱用 foreach 了,5000 条数据花了 14 分钟。。...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/627003

相关文章

mybatis映射器配置小结

《mybatis映射器配置小结》本文详解MyBatis映射器配置,重点讲解字段映射的三种解决方案(别名、自动驼峰映射、resultMap),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定... 目录select中字段的映射问题使用SQL语句中的别名功能使用mapUnderscoreToCame

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

mybatis-plus如何根据任意字段saveOrUpdateBatch

《mybatis-plus如何根据任意字段saveOrUpdateBatch》MyBatisPlussaveOrUpdateBatch默认按主键判断操作类型,若需按其他唯一字段(如agentId、pe... 目录使用场景方法源码方法改造首先在service层定义接口service层接口实现总结使用场景my

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装