本文主要是介绍POJ2955 Brackets【区间DP 基础】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Brackets
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 12763 | Accepted: 6776 |
Description
We give the following inductive definition of a “regular brackets” sequence:
- the empty sequence is a regular brackets sequence,
- if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
- if a and b are regular brackets sequences, then ab is a regular brackets sequence.
- no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), [], (()), ()[], ()[()]
while the following character sequences are not:
(, ], )(, ([)], ([(]
Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.
Given the initial sequence ([([]])]
, the longest regular brackets subsequence is [([])]
.
Input
The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (
, )
, [
, and ]
; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.
Output
For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.
Sample Input
((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6
Source
Stanford Local 2004
问题链接:POJ2955 Brackets
问题描述:求最大括号匹配
解题思路:基础的区间DP,dp[i][j]表示 [i,j] 区间内的最大匹配数,如果s[i]和s[j]匹配了,那么dp[i][j]=dp[i+1][j-1]+2。接着在区间[i,j]内设置断点k (i<=k<j) dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j])
AC的C++程序:
#include<iostream>
#include<cstring>using namespace std;using namespace std;const int N=105;
int dp[N][N];int main()
{char s[N];while(~scanf("%s",s)){if(s[0]=='e')break;memset(dp,0,sizeof(dp));int n=strlen(s);for(int len=1;len<n;len++)for(int i=0,j=len;j<n;i++,j++){if((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))dp[i][j]=dp[i+1][j-1]+2;//加2是由于s[i]和s[j]两个匹配了for(int k=i;k<j;k++)//遍历各个断点 dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]); }printf("%d\n",dp[0][n-1]);}return 0;
}
这篇关于POJ2955 Brackets【区间DP 基础】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!