【ARMv8M Cortex-M33 系列 7.2 -- HardFault 问题定位 1】

2024-01-20 14:28

本文主要是介绍【ARMv8M Cortex-M33 系列 7.2 -- HardFault 问题定位 1】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


请阅读【嵌入式开发学习必备专栏 之 ARM Cortex-Mx专栏】


文章目录

    • 问题背景
    • 堆栈对齐要求
      • Cortex-M33 的 FPU 功能

问题背景

rt-thread 在PendSV_Handler退出的时候发生了HardFault_Handler是什么原因?且 LR 的值为0xfffffffd

堆栈对齐要求

在 ARM Cortex-M 架构中,堆栈指针 (SP) 必须始终保持 8 字节对齐。这是因为从 ARMv7-M 开始,堆栈帧可能包含额外的浮点寄存器,而要求 8 字节对齐以实现更有效的访问和与浮点寄存器大小相一致。

在进入异常处理时,处理器会自动将 xPSR、返回地址、LRR12R3R2R1R0 压入堆栈;如果使用浮点单元且由异常激活,则还会压入 S0-S15FPSCR 寄存器。

当从异常返回时,处理器会根据 LR 中的 EXC_RETURN 值来检查堆栈指针,以确保正确地恢复寄存器状态。

发生 HardFault 的原因可能很多,但当你看到 LR(链接寄存器)的值为 0xFFFFFFFD 时,这表明异常返回时处理器试图从进程堆栈指针(PSP)恢复上下文。这个特定的 EXC_RETURN 值意味着在从异常(这种情况下是 PendSV)返回时,发生了与堆栈或上下文恢复有关的问题。

以下是一些可能导致你在 PendSV_Handler 退出时遭遇 HardFault 的原因:

  1. 堆栈指针 (PSP) 不正确:如果 PSP 被错误地设置或在异常处理期间被破坏,它可能不再指向有效的堆栈帧,导致在尝试恢复寄存器时访问了错误的内存地址。
  2. 堆栈溢出:如果任务的堆栈空间不足,可能在堆栈中写入时超过了分配的边界,导致堆栈损坏。
  3. 上下文保存不完整或不正确:在进入 PendSV_Handler 时,必须保存当前任务的上下文,包括所有必要的寄存器。如果保存过程中出错,或者未能保存足够的寄存器状态,那么恢复这些寄存器时会遇到问题。
  4. 上下文恢复到错误的地址:如果保存的程序计数器(PC)或状态寄存器(xPSR)的值不正确,那么在尝试返回到这些地址时会触发 HardFault
  5. 错误的异常返回指令:虽然 LR 的值是正确的 EXC_RETURN,但如果在异常处理的汇编代码中有错误,可能会导致错误的堆栈操作或错误的异常返回。

为了调试此 HardFault,可以采取以下步骤:

  • 检查 PSP 的值:在 HardFault_Handler 中,检查 PSP 是否指向有效的内存区域。
  • 检查堆栈大小:验证所有任务的堆栈大小是否足够,并没有发生堆栈溢出。
  • 使用调试器:如果可能,使用调试器单步执行 PendSV_Handler 中的代码,观察 PSPPCxPSR 的值以及它们的变化。
  • 查看 HardFault_Handler :实现一个 HardFault_Handler 来捕获硬件错误,从中可以读取更多的系统状态和错误信息,例如配置故障状态寄存器 CFSRHFSRMMFARBFAR
  • 审查 RT-Thread 的系统配置:确认 RT-Thread 的配置与你的硬件设备兼容,尤其是关于任务堆栈和堆内存的部分。
  • 堆栈帧对齐检查:确保在进入 PendSV_Handler 之前堆栈帧是正确对齐的,因为 ARM Cortex-M 系列处理器要求堆栈必须8字节对齐。如果启用了自动堆栈对齐检查,STKALIGN 位在 CCR 寄存器内,那么在对齐错误时可能会引发 UsageFault,如果没有启用相关的 UsageFault,则会变成 HardFault

接着上篇文章:【ARMv8M Cortex-M33 系列 7.1 – xPSR | CFSR | HFSR | BFAR | MMFAR 寄存器】 来通过JLink 来对 错误提示信息寄存器进行debug,它们的地址如下:

#define SCB_CFSR        (*(volatile const unsigned *)0xE000ED28) /* Configurable Fault Status Register */
#define SCB_HFSR        (*(volatile const unsigned *)0xE000ED2C) /* HardFault Status Register */
#define SCB_MMAR        (*(volatile const unsigned *)0xE000ED34) /* MemManage Fault Address register */
#define SCB_BFAR        (*(volatile const unsigned *)0xE000ED38) /* Bus Fault Address Register */
#define SCB_AIRCR       (*(volatile unsigned long *)0xE000ED0C)  /* Reset control Address Register */
#define SCB_RESET_VALUE 0x05FA0004                               /* Reset value, write to SCB_AIRCR can reset cpu */

通过JTAG 读取上面debug 寄存器SCB_CFSR的值:

mem32 0xe000ed28 1
E000ED28 = 00040000

在这里插入图片描述
INVPC, bit [2]
Invalid PC flag. Sticky flag indicating whether an integrity check error has occurred.

可以看到发生 INVPC 这个错误。

继续 Debug 其它寄存器:

mem32 0xe000ed2c 1
E000ED2C = 40000000

在这里插入图片描述
FORCED, bit [30]
Forced. Indicates that a fault with configurable priority has been escalated to a HardFault exception, because
it could not be made active, because of priority, or because it was disabled.

从上面的解释可以看到问题原因是由于某个异常升级为了 HardFault 异常了,可能是由于这个异常没有enable,所以后面就需要查看如何使能Cortex-M33 的各种异常。

继续 Debug 其它寄存器:

mem32 0xe000ed34 1
E000ED34 = 20000BF4

在这里插入图片描述
ADDRESS, bits [31:0]
Data address for an MemManage fault. This register is updated with the address of a location that produced a
MemManage fault. The MMFSR shows the cause of the fault, and whether this field is valid. This field is
valid only when MMFSR.MMARVALID is set, otherwise it is UNKNOWN.

Attributes
8-bit read/write-one-to-clear register located at 0xE000ED28.
在这里插入图片描述
这个寄存器也就是寄存器CFSR 的 低8bits,由于低8bits 为0,所以,不是memmanage fault 的问题。

mem32 0xe000ed38 1
E000ED38 = 20000BF4

在这里插入图片描述
ADDRESS, bits [31:0]
Data address for a precise BusFault. This register is updated with the address of a location that produced
a BusFault. BFSR shows the reason for the fault. This field is valid only when BFSR.BFARVALID is set,
otherwise it is UNKNOWN.
由于 BFSR.BFARVALID 值为0,所以也不是 Busfault。

当将编译参数中的硬浮点修改为软浮点之后,再去读CFSR 寄存器的值为:

J-Link>mem32 0xe000ed28 1
E000ED28 = 01000000

也就是报出 UNALIGNED 错误(Debug 到最后发现也不是这个问题引起的)。到目前为止仍然没有找到问题所在!!!

那么如何配置不使用fpu功能?
要在 ARM Cortex-M33 上使用 ARM GCC 编译器配置不使用 FPU(浮点单元)功能,需要在编译选项中指定不使用硬件浮点支持。这可以通过设置适当的编译器标志实现。

ARM Cortex-M33 可以配置为带有或不带有 FPU。如果你的 Cortex-M33 核心不包含 FPU,或者你的应用程序不需要浮点运算支持,你应该确保编译器不生成任何浮点指令或链接到浮点库。

以下是如何在编译器选项中禁用 FPU 支持的示例:

-mcpu=cortex-m33 -mthumb -mfloat-abi=soft 

这里的编译器选项说明如下:

  • -mcpu=cortex-m33: 指定目标 CPU 是 Cortex-M33。
  • -mthumb: 指示编译器生成 Thumb 指令集的代码。
  • -mfloat-abi=soft: 指定浮点 Application Binary Interface (ABI) 为软件实现(soft)。

这意味着即使硬件支持浮点运算,也将使用软件库来执行浮点运算。这个选项确保编译器不会生成使用 FPU 的代码。

如果你的应用程序确实包含浮点运算,上述设置会导致所有浮点运算都通过软件库函数实现,而不是使用 FPU。这会导致浮点运算性能降低,但可以避免在不包含 FPU 的 Cortex-M33 核心或者选择不使用 FPU 的情况下,发生与硬件相关的问题。

请确保编译器选项在整个项目的编译和链接过程中保持一致,包括任何库或外部模块。如果链接到了已编译的库,也需要确保这些库是在不使用 FPU 支持的情况下编译的。

最后在Makefile 中的配置如下

#LDS_INC = -L $(LIB_PATH)/lib/gcc/arm-none-eabi/10.2.1/thumb/v8-m.main+fp/hard
LDS_INC = -L $(LIB_PATH)/lib/gcc/arm-none-eabi/10.2.1/thumb/v8-m.main/nofp \-L $(LIB_PATH)/arm-none-eabi/lib/thumb/v8-m.main/nofp
all: $(TARGET) postbuild$(TARGET): $(OBJS)@echo Building target: $@$(LD) $(LDS_INC) -T $(LDS) --gc-sections -Map ra4m2.map -o $@ $(OBJS) -lc -lm -lgcc

Cortex-M33 的 FPU 功能

ARM Cortex-M33 处理器是 ARMv8-M 架构的一部分,可选地包含一个符合 IEEE 754 标准的单精度浮点单元 (FPU),支持所有单精度浮点数据类型的运算。包含 FPU 的 Cortex-M33 可以提高浮点计算的性能,适用于需要执行大量浮点计算的应用程序。

Cortex-M33 的 FPU 支持以下特性:

  • 编译器可以生成硬件 FPU 指令来完成浮点运算,这通常比软件实现更快。
  • FPU 支持单精度(32位)浮点数的加、减、乘、除运算和其他复杂运算。
  • 浮点运算的结果可以直接用于程序流程控制,如浮点比较和分支。

如果选择在 Cortex-M33 上使用 FPU 功能,需要使用 -mfloat-abi=hard-mfloat-abi=softfp 编译器选项来启用硬件浮点支持。这些选项会使编译器产生使用 FPU 的代码,并链接到相应的浮点库。

Q:cortex-m33默认安全状态下如何启动rt-thread os,需要配置哪些内容? 可以一直在安全状态下运行os吗?
A: 要在 Cortex-M33 默认的安全状态下启动 RT-Thread OS,需要执行一系列的初始化步骤来配置处理器,启动操作系统,并确保操作系统及其任务在安全状态下正确运行。

下面是一般需要执行的步骤:

  1. 初始化硬件
    • 配置系统时钟,包括 CPU 时钟、外设时钟等。
    • 初始化必要的外设,如定时器、串口、中断控制器等。
  2. 配置中断向量表
    • 将 RT-Thread 的中断向量表的位置设置到默认的中断向量表寄存器(VTOR)。
  3. 配置堆栈指针
    • 设置 MSP 或 PSP 的值,确保为 RT-Thread OS 的中断和任务提供正确的堆栈。
  4. 初始化 RT-Thread OS
    • 调用 RT-Thread 提供的初始化函数,如 rt_system_scheduler_init 初始化调度器,rt_system_timer_init 初始化系统定时器等。
  5. 创建任务(线程)
    • 使用 RT-Thread 提供的 API,如 rt_thread_create,来创建并初始化操作系统任务。
  6. 启动调度器
    • 调用 rt_system_scheduler_start 来启动 RT-Thread 的调度器。
  7. 附加系统服务和中断处理
    • 将 RT-Thread 的系统服务和中断处理函数附加到 Cortex-M33 的异常和中断向量。
  8. TrustZone 配置(如果使用 TrustZone)
    • 如果打算使用 TrustZone,你需要正确配置安全属性单元(SAU),确保内存和外设的安全状态符合 RT-Thread 的要求。在默认安全状态下,这一步可能不是必需的。 你可以一直在安全状态下运行 RT-Thread OS。

实际上,如果你不需要 TrustZone 提供的安全状态和非安全状态之间的隔离,或者不打算在非安全状态下运行任何代码,那么你可以简单地将整个系统配置为安全状态,并在该状态下运行操作系统。这种情况下,你不需要配置任何有关 TrustZone 的特定内容,系统将作为一个普通的单状态(只有安全状态)系统运行。

如果你使用了 TrustZone 并且需要在系统的非安全状态下运行某些代码,那么你需要在系统启动时配置 TrustZone 的相关设置,并实现从安全状态到非安全状态的切换逻辑。

总之,RT-Thread OS 作为一个灵活的实时操作系统,能够在 Cortex-M33 处理器的安全状态下运行,无论是独立于 TrustZone 特性,还是与 TrustZone 安全特性一起使用。具体配置和启动步骤应参考 RT-Thread OS 的文档和 Cortex-M33 的硬件手册。

这篇关于【ARMv8M Cortex-M33 系列 7.2 -- HardFault 问题定位 1】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/626297

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0