GPT-4参数最新爆料1.76万亿参数,8个2200亿MoE模型,深信不疑

2024-01-20 10:10

本文主要是介绍GPT-4参数最新爆料1.76万亿参数,8个2200亿MoE模型,深信不疑,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!






家人们,GPT-4的参数可能还真不止1万亿! 近来,美国知名骇客George Hotz在接受采访时透露,GPT-4由8个220B模型组成。 这么算来,8 x 220B = 1.76万亿。 就连PyTorch的创建者Soumith Chintala对此也深信不疑。 GPT-4:8 x 220B专家模型用不同的数据/任务分布和16-iter推理进行训练。 如果真是这样的话,GPT-4的训练可能更加有效。 7d07b3279ffda6269e883b95189f159d.jpeg

1.76万亿「八头蛇」?


在GPT-4还未放出之前,GPT-3有1750亿个参数,一众网友猜测GPT-4岂不是要逆天,最起码1万亿。 a8ff12664a65928ca726accffeb8ed0c.jpeg 而George在接受Latent Space的采访时,对GPT4架构的描述着实让人震惊。 他的部分原话如下:

GPT-4每个head都有2200亿参数,是一个8路的混合模型。所以,混合模型是当你想不出办法的时候才会做的。OpenAI训练了相同模型8次,他们有一些小技巧。他们实际上进行了16次推断。

他特别强调,OpenAI做了8个混合专家模型,任何人可以花8倍资金都能训练出来。 也就是说,人们能够训练更小模型更长时间,微调后,就能找到这些技巧。 OpenAI曾经发表类似关于让计算量不变的情况下,让训练更好的算法,比较像BatchNorm和NoBatchNorm。 a57b483c945c13e828f63be6e715bbc3.jpeg 一起看看George Hotz具体的介绍视频:

网友热评

就像George所说,这是8个较小的模型,如果有足够资金训练8个混合模型,这是一个微不足道的解决方案。 37ffc55fc71ab8d1b54878dfecd8680b.jpeg 所以,GPT-4是GPT-3的10倍,而1月份的所有小圈圈大圈圈的meme实际上是......真的?! 3a5c354e6bb52d013575626c3a764321.jpeg 网友得知秘诀后,打算自己也要训练一个LLaMA集合体与GPT-4竞争。 cd4f24a0fdf03584151e1ef7e1d8c440.jpeg 还有网友称,这有点像LLM-Blender。 daed14e909bf28dcc42c77aa8a46c497.jpeg 我早就听到了稍微可信的传言,说GPT-4将是MoE,但从未得到证实。MoE和大约1万亿个参数不会让我感到惊讶,这听起来极为合理。 02a65bacd74103f572b9b052caa47dad.jpeg 还有网友进行深度分析: 老实说,我预计这将是人工智能架构的下一阶段。我们已经看到特定任务模型在任务中的表现比一般模型好得多。 因此,将许多特定任务模型组合在一起将是下一个合乎逻辑的步骤。这几乎使升级系统变得容易得多,一次只能处理一个模型。 话虽如此,OpenAI以一种未来可能会,也可能不会的方式做到了这一点。显然,组合系统可能会有更多的小模型,而不是几个更大的模型。 6f56b259856c717b05943328974b701b.jpeg 如果这是真的,这是否意味着每个220B模型也有32K的上下文长度? a12814f984bc033eef2546e7a95d4a1d.jpeg




这篇关于GPT-4参数最新爆料1.76万亿参数,8个2200亿MoE模型,深信不疑的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/625652

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

如何在页面调用utility bar并传递参数至lwc组件

1.在app的utility item中添加lwc组件: 2.调用utility bar api的方式有两种: 方法一,通过lwc调用: import {LightningElement,api ,wire } from 'lwc';import { publish, MessageContext } from 'lightning/messageService';import Ca

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

4B参数秒杀GPT-3.5:MiniCPM 3.0惊艳登场!

​ 面壁智能 在 AI 的世界里,总有那么几个时刻让人惊叹不已。面壁智能推出的 MiniCPM 3.0,这个仅有4B参数的"小钢炮",正在以惊人的实力挑战着 GPT-3.5 这个曾经的AI巨人。 MiniCPM 3.0 MiniCPM 3.0 MiniCPM 3.0 目前的主要功能有: 长上下文功能:原生支持 32k 上下文长度,性能完美。我们引入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言