Gambler's Ruin(赌徒破产问题 概率论)

2024-01-19 22:08

本文主要是介绍Gambler's Ruin(赌徒破产问题 概率论),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

赌徒破产问题,做tc时遇到,顺便拿来好好研究下

英文原版地址为:Gambler's Ruin

问题如下:

一个赌徒有h枚金币,每次有概率a获得一枚金币或者概率(1-a)丢掉一枚金币,直到其所有的金币总数达到N或0则游戏结束,求赌徒最终赢得N枚金币的概率P(N|h)。

对于两个状态我们可以确定,即P(N|N)=1、P(N|0)=0。同时得出状态转移公式(概率的推导和普通的DP还是很不一样的,好好体会下):

P(N|h) = a*P(N|h+1) + (1-a)*P(N|h-1)

这类公式可以表示为二阶线性递归关系,其特征多项式为(自行百度):

x^2 - 1/a * x + (1-a)/a = 0

求出特征方程的根为1和r=(1-a)/a,针对a==1/2的情况需要特殊处理。得到公式的通解为:

P(N|h) = A*(1^h) + B*(r^h)

根据已知条件P(N|N)=1、P(N|0)=0得:

1 = A + B*(r^N)

0 = A + B

A = -1/(r^N - 1)、B = 1/(r^N - 1)

得到最终解 P(N|h) = (r^h - 1)/(r^N - 1)

但是当a==1/2时,特征方程有重根,因此这种情况下通解为 

P(N|h) = A+B*h

A = 0、B=1/N

即 P(N|h) = h/N


再来看topcoder srm 667 div1 500的题


Problem Statement

 

There are N cats sitting around a circle. The cats are numbered 0 throughN-1 in clockwise order. Note that as they sit around a circle, catN-1 is adjacent to cat 0. The cats are playing a game and the winner will get a prize!

The game looks as follows:

  • There is a single ball. Initially, cat 0 holds the ball.
  • In each round of the game, the cat who currently holds a ball flips a biased coin. The coin will come up heads with probabilityp/1,000,000,000 and tails with probability 1-(p/1,000,000,000).
  • If the coin came up heads, the current cat will hand the ball to the next cat clockwise, otherwise the current cat will hand the ball to the next cat counterclockwise. Formally, if the current cat is cat j, heads means that the ball goes to cat (j+1) modN and tails means that it goes to cat (j-1) mod N.
  • The game is played until each cat held the ball at least once. The cat who holds the ball at the end of the game is the winner.

In other words, the winner is the last cat to touch the ball. Note that cat 0 holds the ball at the beginning, and this does count as holding the ball. Hence, if there is more than one cat, cat 0 can never win the game.

Cat K wonders what is the probability that she will win the prize. You are given the intsN,K, and p. Return the probability that catK wins.

Definition

 
Class:CatsOnTheCircle
Method:getProb
Parameters:int, int, int
Returns:double
Method signature:double getProb(int N, int K, int p)
(be sure your method is public)

Limits

 
Time limit (s):2.000
Memory limit (MB):256
Stack limit (MB):256

Notes

-Your return value must have an absolute or relative error smaller than or equal to 1e-6

Constraints

-N will be between 3 and 1,000,000,000, inclusive.
-K will be between 1 and N-1, inclusive.
-p will be between 1 and 999,999,999, inclusive.

Examples

0) 
 
3
1
300000000
Returns: 0.6999999999999985
This game has N=3 cats, labeled 0, 1, 2. We havep=30,000,000, hence the coin will come up heads with probability 30,000,000/1,000,000,000 = 0.3 and tails with probability 0.7. The game can look as follows:
  1. Cat 0 is given the ball.
  2. Cat 0 flips the coin. The coin comes up tails.
  3. Cat 0 hands the ball to cat (0-1) mod 3 = cat 2.
  4. Cat 2 flips the coin. The comes up tails again.
  5. Cat 2 hands the ball to cat (2-1) mod 3 = cat 1.
  6. At this moment, each cat has held the ball. The game ends and cat 1 gets the prize.
This particular sequence of events has probability 0.7*0.7 of occuring. It can be shown that the probability that cat 1 wins the game is 0.7.
1) 
 
6
2
500000000
Returns: 0.2
The coin that is flipped will come up heads with probability 1/2, and tails with probability 1/2.
2) 
 
6
5
500000000
Returns: 0.2
3) 
 
10
2
666666666
Returns: 0.00391389439551009
4) 
 
999999999
999999996
777777777
Returns: 0.05830903870125612
5) 
 
1000000000
4
300000000
Returns: 0.044981259448371
6) 
 
534428790
459947197
500000000
Returns: 1.871156682766205E-9



题意:

N只猫围成一圈玩游戏,顺时针编号0~N-1,N-1与0相邻。游戏规则如下:

、一开始编号0的猫拿着一个球

、每个回合中手里拿球的猫抛硬币,该硬币有P/1000000000的概率正面朝上,(1-P/1000000000)的概率反面朝上

、如果硬币正面朝上,则该猫 j 把球传给编号为(1+j)%N的猫,否则传给编号为(j-1+N)%N的猫

、该游戏持续进行直到每只猫至少拿到一次球。且最终拿球的猫赢得游戏

现在给定N K P,求出编号为K的猫赢得游戏的概率。


分析:

1. 如果最终猫K拿到球并结束游戏,那么之前一回合必然是猫K-1或K+1拿球,且除K外的猫都至少拿过一次球。则最终的结果为P(K+1,K-1) + P(K-1,K+1),既猫K+1先拿到球的前提下K-1拿到球的概率加上猫K-1先拿到球的前提下K+1拿到球的概率。这样就可以了,因为当全局只剩下K没有拿过球,K必然是最后一个拿到球的。

2. 这种情况和赌徒破产问题有什么类似之处呢?再来回顾下赌徒破产问题,该问题求的是当前有h枚金币的情况下,赢得N枚金币的概率。不如我们换一种表述方式,即该赌徒一开始最多能连续输掉h枚金币。放到这题的环境中,我们假设顺时针走等于金币加一,逆时针走等于金币减一。

3. 以求解P(K-1,K+1)为例,需要将其拆分为两种概率的乘积:P(a)=从0出发向左走最多到达K+2,且向右走必然到达K-1;P(b)=从K-1出发向右最多到达K-1,且向左走必然到达K+1;这样一来就可以套赌徒破产问题了。

4. 大于1.0的浮点数求幂可能会爆,需要控制一下

总结:

概率真是tm的神奇


#include <cstdio>
#include <iostream>
#include <string>
#include<assert.h>
#include <algorithm>
#include <vector>
#include <cstring>
#include <queue>
#include <set>
typedef long long int ll;
#define rp(i,b) for(int i=(0),__tzg_##i=(b);i<__tzg_##i;++i)
#define rep(i,a,b) for(int i=(a),__tzg_##i=(b);i<__tzg_##i;++i)
#define repd(i,a,b) for(int i=(a),__tzg_##i=(b);i<=__tzg_##i;++i)
#define mst(a,b) memset(a,b,sizeof(a))
using namespace std;
const double Denominator = 1e9;
const double eps = 1/Denominator;
struct CatsOnTheCircle {double gamblers_ruin(int n, int h, double p) {double q = 1.0-p;if (fabs(p-q) < eps)return 1.0*h/n;if (q > p)return 1-gamblers_ruin(n, n-h, q);double r = q/p;return (pow(r,h)-1)/(pow(r,n)-1);}double getProb(int N, int K, int _p){double p = _p/Denominator;double q = 1.0-p;double o = gamblers_ruin(N-2, N-K-1, p);double u = gamblers_ruin(N-2, K-1, q);return o*gamblers_ruin(N-1, 1, q) + u*gamblers_ruin(N-1, 1, p);}
};




这篇关于Gambler's Ruin(赌徒破产问题 概率论)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/623844

相关文章

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py