openpose之使用摄像头检测并输出到json文件

2024-01-19 14:36

本文主要是介绍openpose之使用摄像头检测并输出到json文件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

编程如画,我是panda!


前言

之前给大家分享了如何搭建openpose环境,并进行了测试案例,但是如果要使用摄像头的话,还需要修改一下运行文件,并且这次会教大家如何输出到json文件 。

如果环境还没有搭建好,请参见我的博客:openpose环境搭建

一、了解输出格式

输出:

如果你使用一张图片进行测试,会得到一个n*25*3的矩阵, n代表检测到了几个人,25代表25个节点,3代表了(x坐标,y坐标,置信度)。

25个节点分别为:

// const std::map<unsigned int, std::string> POSE_BODY_25_BODY_PARTS {
//     {0,  "Nose"},
//     {1,  "Neck"},
//     {2,  "RShoulder"},
//     {3,  "RElbow"},
//     {4,  "RWrist"},
//     {5,  "LShoulder"},
//     {6,  "LElbow"},
//     {7,  "LWrist"},
//     {8,  "MidHip"},
//     {9,  "RHip"},
//     {10, "RKnee"},
//     {11, "RAnkle"},
//     {12, "LHip"},
//     {13, "LKnee"},
//     {14, "LAnkle"},
//     {15, "REye"},
//     {16, "LEye"},
//     {17, "REar"},
//     {18, "LEar"},
//     {19, "LBigToe"},
//     {20, "LSmallToe"},
//     {21, "LHeel"},
//     {22, "RBigToe"},
//     {23, "RSmallToe"},
//     {24, "RHeel"},
//     {25, "Background"}
// };

二、使用摄像头

openpose中有很多参数,可以使用参数来控制是否使用摄像头:

import os
import sys
import cv2
from sys import platform
import argparse
import numpy as npdir_path = os.path.dirname(os.path.realpath(__file__))
sys.path.append(dir_path)
os.environ['PATH'] = os.environ['PATH'] + ';' + dir_path + '/bin;'
import pyopenpose as opprint(op)
print("成功引入pyopenpose")parser = argparse.ArgumentParser()
parser.add_argument("--camera", default=0, help="Camera index for capturing video. Default is 0.")
args = parser.parse_known_args()# Custom Params
params = dict()
params["model_folder"] = "models/"
params["net_resolution"] = "368x256"# Starting OpenPose
opWrapper = op.WrapperPython()
opWrapper.configure(params)
opWrapper.start()# Start capturing from the camera
cap = cv2.VideoCapture(int(args[0].camera))while True:# Read a frame from the cameraret, frame = cap.read()if not ret:break# Process the framedatum = op.Datum()datum.cvInputData = frameopWrapper.emplaceAndPop(op.VectorDatum([datum]))# Display the resultprint("Body keypoints: \n" + str(datum.poseKeypoints))cv2.imshow("OpenPose 1.7.0 - Tutorial Python API", datum.cvOutputData)# Break the loop when 'q' is pressedif cv2.waitKey(1) & 0xFF == ord('q'):break# Release resources
cap.release()
cv2.destroyAllWindows()
opWrapper.stop()

如果你想输出到json文件,可以设置参数:

params["write_json"] = "json_output/"  # 指定保存 JSON 文件的目录

完整代码如下:

import os
import sys
import cv2
from sys import platform
import argparse
import json  # 添加 json 模块dir_path = os.path.dirname(os.path.realpath(__file__))
sys.path.append(dir_path)
os.environ['PATH'] = os.environ['PATH'] + ';' + dir_path + '/bin;'
import pyopenpose as opprint(op)
print("成功引入pyopenpose")parser = argparse.ArgumentParser()
parser.add_argument("--camera", default=0, help="Camera index for capturing video. Default is 0.")
args = parser.parse_known_args()# Custom Params
params = dict()
params["model_folder"] = "models/"
params["net_resolution"] = "368x256"
params["write_json"] = "json_output/"  # 指定保存 JSON 文件的目录# Starting OpenPose
opWrapper = op.WrapperPython()
opWrapper.configure(params)
opWrapper.start()# Start capturing from the camera
cap = cv2.VideoCapture(int(args[0].camera))while True:# Read a frame from the cameraret, frame = cap.read()if not ret:break# Process the framedatum = op.Datum()datum.cvInputData = frameopWrapper.emplaceAndPop(op.VectorDatum([datum]))# Display the resultprint("Body keypoints: \n" + str(datum.poseKeypoints))# Check if JSON file exists and read keypoints from JSONjson_path = os.path.join(params["write_json"], f"{str(args[0].camera)}.json")if os.path.exists(json_path):with open(json_path, 'r') as json_file:json_data = json.load(json_file)keypoints = json_data["people"][0]["pose_keypoints_2d"]print("Body keypoints from JSON: \n", keypoints)cv2.imshow("OpenPose 1.7.0 - Tutorial Python API", datum.cvOutputData)# Break the loop when 'q' is pressedif cv2.waitKey(1) & 0xFF == ord('q'):break# Release resources
cap.release()
cv2.destroyAllWindows()
opWrapper.stop()

结果:(要把摄像头打开哈,我就不打开了(●'◡'●))

然后会得到json文件夹:

 

这篇关于openpose之使用摄像头检测并输出到json文件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622730

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的