BFS,二分,并查集综合应用,P2658 汽车拉力比赛;P3958 [NOIP2017 提高组] 奶酪

本文主要是介绍BFS,二分,并查集综合应用,P2658 汽车拉力比赛;P3958 [NOIP2017 提高组] 奶酪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

博艾市将要举行一场汽车拉力比赛。

赛场凹凸不平,所以被描述为M*N的网格来表示海拔高度(1≤ M,N ≤500),每个单元格的海拔范围在0到10^9之间。

其中一些单元格被定义为路标。组织者希望给整个路线指定一个难度系数D,这样参赛选手从任一路标到达别的路标所经过的路径上相邻单元格的海拔高度差不会大于D。也就是说这个难度系数D指的是保证所有路标相互可达的最小值。任一单元格和其东西南北四个方向上的单元格都是相邻的。

输入格式

第一行两个整数M和N。第2行到第M+1行,每行N个整数描述海拔高度。第2+M行到第1+2M

行,每行N个整数,每个数非0即1,1表示该单元格是一个路标。

输出格式

一个整数,即赛道的难度系数D。

输入输出样例

输入 #1复制

3 5 
20 21 18 99 5  
19 22 20 16 26
18 17 40 60 80
1 0 0 0 1
0 0 0 0 0
0 0 0 0 1

输出 #1复制

21

题目所求的最大海拔差的最小值D满足:任意大于等于D的值也满足路标相互可达,只不过D是这些值中最小的哪个,满足单调性,所以可以考虑用二分来逼近D;

又因为需要判断“路标相互可达”,所以考虑用并查集来判断;

遍历地图优先考虑bfs

代码如下


#include<iostream>
#include<vector>
#include<algorithm>
#include<cstring>
#include<map>
#include<set>
#include<stack>
#include<queue>
#include<cstdio>
#include<iomanip>using namespace std;
typedef long long LL;
const int N = 505;
int arr[N][N],arr1[N][N],fa[N*N],vis[N][N];
int n, m;
vector<pair<int, int>>p;
int ay[] = { 0,1,0,-1 }, ax[] = { 1,0,-1,0 };int find(int a) {if (fa[a] == a)return a;return fa[a] = find(fa[a]);
}void merge(int a, int b) {int x = find(a);int y = find(b);fa[x] = y;
}
void bfs(int D) {//这里的bfs不同于我们平时用队列写的bfs,这里的bfs更好写for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {for (int k = 0; k < 4; k++) {int ty = i + ay[k], tx = j + ax[k];if (ty <= 0 || tx <= 0 || ty > n || tx > m)continue;if (abs(arr[ty][tx] - arr[i][j]) > D)continue;merge((ty - 1) * m + tx, (i - 1) * m + j);}}}
}int check(int D) {for (int i = 1; i <= n * m; i++) {fa[i] = i;}bfs(D);int t = find((p[0].first - 1) * m + p[0].second);for (int i = 0; i < p.size(); i++) {if (find((p[i].first - 1) * m + p[i].second) != t)return 1;}return 0;
}int main() {scanf("%d%d", &n, &m);int mx = 0;for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {scanf("%d", &arr[i][j]);mx = max(mx, arr[i][j]);}}for (int i = 1; i <= n; i++) {for (int j = 1,t; j <= m; j++) {scanf("%d", &t);if (t == 1) {p.push_back({ i,j });}}}int l = 0, r = mx, mid, ans = 0;while (r >= l) {mid = l + (r - l) / 2;if (check(mid)) {l = mid + 1;}else {ans = mid;r = mid - 1;}}cout << ans << endl;return 0;
}

                        P3958 [NOIP2017 提高组] 奶酪

(这道题没有二分)

题目描述

现有一块大奶酪,它的高度为 ℎh,它的长度和宽度我们可以认为是无限大的,奶酪中间有许多半径相同的球形空洞。我们可以在这块奶酪中建立空间坐标系,在坐标系中,奶酪的下表面为 z=0,奶酪的上表面为 z=h。

现在,奶酪的下表面有一只小老鼠 Jerry,它知道奶酪中所有空洞的球心所在的坐标。如果两个空洞相切或是相交,则 Jerry 可以从其中一个空洞跑到另一个空洞,特别地,如果一个空洞与下表面相切或是相交,Jerry 则可以从奶酪下表面跑进空洞;如果一个空洞与上表面相切或是相交,Jerry 则可以从空洞跑到奶酪上表面。

位于奶酪下表面的 Jerry 想知道,在不破坏奶酪的情况下,能否利用已有的空洞跑 到奶酪的上表面去?

输入格式

每个输入文件包含多组数据。

第一行,包含一个正整数 T,代表该输入文件中所含的数据组数。

接下来是 T 组数据,每组数据的格式如下: 第一行包含三个正整数 n,h,r,两个数之间以一个空格分开,分别代表奶酪中空洞的数量,奶酪的高度和空洞的半径。

接下来的 n 行,每行包含三个整数 x,y,z,两个数之间以一个空格分开,表示空洞球心坐标为 (x,y,z)。

输出格式

T 行,分别对应 T 组数据的答案,如果在第 i 组数据中,Jerry 能从下表面跑到上表面,则输出 Yes,如果不能,则输出 No

输入输出样例

输入 #1复制

3 
2 4 1 
0 0 1 
0 0 3 
2 5 1 
0 0 1 
0 0 4 
2 5 2 
0 0 2 
2 0 4

输出 #1复制

Yes
No
Yes

说明/提示

【输入输出样例 11 说明】

第一组数据,由奶酪的剖面图可见:

第一个空洞在 (0,0,0)(0,0,0) 与下表面相切;

第二个空洞在 (0,0,4)(0,0,4) 与上表面相切;

两个空洞在 (0,0,2)(0,0,2) 相切。

输出 Yes

第二组数据,由奶酪的剖面图可见:

两个空洞既不相交也不相切。

输出 No

第三组数据,由奶酪的剖面图可见:

两个空洞相交,且与上下表面相切或相交。

输出 Yes

【数据规模与约定】

对于 20%20% 的数据,�=1n=1,1≤ℎ1≤h,�≤104r≤104,坐标的绝对值不超过 104104。

对于 40%40% 的数据,1≤�≤81≤n≤8,1≤ℎ1≤h,�≤104r≤104,坐标的绝对值不超过 104104。

对于 80%80% 的数据,1≤�≤1031≤n≤103,1≤ℎ,�≤1041≤h,r≤104,坐标的绝对值不超过 104104。

对于 100%100% 的数据,1≤�≤1×1031≤n≤1×103,1≤ℎ,�≤1091≤h,r≤109,�≤20T≤20,坐标的绝对值不超过 109109。

#include<iostream>
#include<vector>
#include<algorithm>
#include<cstring>
#include<map>
#include<set>
#include<stack>
#include<queue>using namespace std;
typedef long long LL;
const int N = 1e3 + 5;
typedef struct st {LL z, y, x;
}st;
st arr[N];
int fa[N];
int n, h;
LL r;int cmp(const st& a, const st& b) {if (a.z == b.z && a.y == b.y) {return a.x < b.x;}if (a.z == b.z) {return a.y < b.y;}return a.z < b.z;
}
int check(int target, int mid) {LL t = 2 * r;if ((arr[target].x - arr[mid].x) * (arr[target].x - arr[mid].x) + (arr[target].y - arr[mid].y) * (arr[target].y - arr[mid].y) > t * t)return 0;LL d = (arr[target].x - arr[mid].x) * (arr[target].x - arr[mid].x) + (arr[target].y - arr[mid].y) * (arr[target].y - arr[mid].y) + (arr[target].z - arr[mid].z) * (arr[target].z - arr[mid].z);if (d > t * t)return 0;return 1;
}
int find(int a) {if (fa[a] == a)return a;return fa[a] = find(fa[a]);
}void merge(int a, int b) {int x = find(a);int y = find(b);fa[x] = y;
}void bfs() {for (int i = 1; i <= n; i++) {for (int j = 1; j <= i; j++) {if (check(i, j))merge(i, j);}}
}int main() {int T;scanf("%d", &T);while (T--) {scanf("%d%d%lld", &n, &h, &r);for (int i = 1; i <= n; i++) {scanf("%lld%lld%lld", &arr[i].x, &arr[i].y, &arr[i].z);}sort(arr + 1, arr + 1 + n, cmp);if (arr[n].z + r < h || arr[1].z>r) {printf("No\n");continue;}for (int i = 1; i <= n; i++)fa[i] = i;bfs();LL f = 0;for (int i = 1; arr[i].z <=r && i <= n; i++) {for (int j = n; j > 0 && arr[j].z >=h-r; j--) {if (find(i) == find(j)) {f = 1;break;}}if (f == 1)break;}if (f == 1)printf("Yes\n");elseprintf("No\n");}return 0;}

这篇关于BFS,二分,并查集综合应用,P2658 汽车拉力比赛;P3958 [NOIP2017 提高组] 奶酪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/622714

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

hdu1254(嵌套bfs,两次bfs)

/*第一次做这种题感觉很有压力,思路还是有点混乱,总是wa,改了好多次才ac的思路:把箱子的移动当做第一层bfs,队列节点要用到当前箱子坐标(x,y),走的次数step,当前人的weizhi(man_x,man_y),要判断人能否将箱子推到某点时要嵌套第二层bfs(人的移动);代码如下:

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2241(二分+合并数组)

题意:判断是否存在a+b+c = x,a,b,c分别属于集合A,B,C 如果用暴力会超时,所以这里用到了数组合并,将b,c数组合并成d,d数组存的是b,c数组元素的和,然后对d数组进行二分就可以了 代码如下(附注释): #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<que

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#