图解 | 你管这破玩意叫动态规划

2024-01-19 09:18

本文主要是介绍图解 | 你管这破玩意叫动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

01

小宇:闪客,我最近在研究动态规划,但感觉就是想不明白,你能不能给我讲讲呀?

闪客:没问题,这个我擅长,你先说说提到动态规划,你最先想到的是什么?

小宇:就什么子问题呀、状态转移方程呀乱七八糟的,哎呀不行不行,我一想到这些脑子又嗡嗡响了。

闪客:你先别急,你先把所有的名词都抛在脑后,听我讲。

小宇:好滴,你说吧。

闪客:小宇我问你,从 1 一直加到 100 等于多少?

1 + 2 + 3 + ... + 100 = ?

小宇:5050!

闪客:你这,怎么不按套路出牌呀,你应该说不知道。

小宇:人家高斯早就算出来了,我还装不知道,这也太假了吧。

全剧终...

02

闪客:好吧,那我再给你出一个题。

小宇:行,你说吧,这回我肯定说不知道。

闪客:一个楼梯有 10 级台阶,你从下往上走,每跨一步只能向上迈 1 级或者 2 级台阶,请问一共有多少种走法?

小宇:额,这我真不知道了,我想想哈。

小宇:不行了不行了,实在想不明白,想了后面的就忘了前面的。

闪客:你还是陷入了穷举的思想,你仔细想想我给你出的第一个题,看看有没有思路。

小宇:啊!原来是有关联的呀。

闪客:对呀,我本来想说假如我告诉你 1+...+99 是多少,你是不是就直接能算出 1+...+100 的值了。

小宇:哦你这么一提示我有点感觉了!要想走到第 10 级台阶,要么是先走到第 9 级,然后再迈一步 1 级台阶上去,要么是先走到第 8 级,然后一次迈 2 级台阶上去。

闪客:太棒了!你找到感觉了!接着往下说。

小宇:这样的话,走到 10 级台阶的走法数,就等于走到 9 级台阶的走法数,加上走到 8 级台阶的走法数。

闪客:很好,那假如走到第 x 级台阶的走法数我们定义为 F(x),那你能把刚刚的描述公式化么?

小宇:那太简单了,公式就是:

F(10) = F(9) + F(8)

闪客:没错,而且不光是 10 级台阶如此,走到任何一级台阶的走法数,都符合这个逻辑,因此就可以得出一个通用公式:

F(x) = F(x-1) + F(x-2)

小宇:嗯嗯,这样计算 F(10),只需要知道 F(9) 和 F(8) 就可以了,而计算 F(8),就只需要知道 F(7) 和 F(6) 就可以了,依次类推。

闪客:没错,那你想想看 F(2) 和 F(1) 怎么计算?

小宇:简单,还是刚刚都逻辑被,想知道 F(2),只需要知道 F(1) 和 F(0),诶不对 F(0) 是什么鬼?还有 F(1) 的计算需要知道 F(0) 和 F(-1),不行呀,这解释不通了。

闪客:哈哈,别急,在这道题里,如果只迈到 1 级台阶,那一共就一种走法;如果只迈到 2 级台阶,就只有两种走法。可以直接很直观地得出,没必要推导。

小宇:哦哦我懂了,这道题里由于每一个递推项都需要前两项的支持,所以必须有最开头的两项作为已知,就是你说的 F(1) = 1 和 F(2) = 2。

闪客:没错。

小宇:嗯嗯,感觉这样就推出全部结果了!我写一下程序你看看。

闪客:先别急,由于这道题是一道经典的动态规划题,所以我们以这道题为例子来定义动态规划的三要素,在本题中

F(x-1) 和 F(x-2) 被称为 F(x) 的最优子结构

F(x) = F(x-1) + F(x-2) 叫状态转移方程

F(1) = 1, F(2) = 2 是问题的边界

之后做动态规划问题,只要找好这三个要素就好了。

小宇:哇,升华了诶,逼格瞬间高了不少呢。

闪客:先别说这些废话了,那接下来你看看能不能写出程序,计算出 F(10) 的结果,这才是难点。

小宇:编程的话这似乎是个递归问题,简单!

int getWays(int n) {if (n == 1) {return 1;}if (n == 2) {return 2;}return getWays(n-1) + getWays(n-2);
}

闪客:嗯不错,这样很简洁,但复杂度太高了,是 O(2^n),具体你可以之后想想为什么。现在你看看能不能将复杂度降低。

小宇:我想想看,计算 F(10) 时需要计算  F(9) 和 F(8),而在递归计算 F(9) 时要计算 F(8) 和 F(7),这样 F(8) 在这里重复计算了,浪费了时间。

闪客:没错,其实计算新一个阶段的值,只需要一直将其前两个阶段的值保存起来,就可以一直算到最终的结果了。比如定义两个变量 a 和 b 用于存储前两个阶段的值,在计算 F(3) 时。

台阶
1
234...
10
走法
a=1
b=2
3


计算 F(4) 时,F(1) 的值就不用保存了,a 和 b 依次替换新值。

台阶
1
234...
10
走法

a=2
b=35


依此类推,最终就算出了 F(10) 的值。

台阶
1
2...89
10
走法



a=34
b=55
89

当然你也可以把之前的值都保留,但这样就增加了空间复杂度,看你的需求了。

小宇:好的,那这样代码也很好写,就这样。

int getWays2(int n) {if (n == 1) {return 1;}if (n == 2) {return 2;}int a = 1;int b = 2;int temp = 0;for (int i = 3; i <= n; i++) {temp = a + b;a = b;b = temp;}return temp;
}

闪客:不错,这就是这道题正确的动态规划解法,而且时间复杂度是 O(N),空间复杂度是 O(1)

小宇:哇,这就是动态规划呀,原来这么简单。

03

闪客:不错,动态规划理解起来不难,难在当需要考虑的因素,也就是变化的维度多起来的时候,有的人就会头脑发蒙,不好找递推公式了,而且这也确实是个难点。

小宇:哦是吗?

闪客:那当然,我再给你出一道题。

小宇:来吧兄弟。

闪客:咳咳,那你听好了。

有一个背包,可以装载重量为 5kg 的物品。

有 4 个物品,他们的重量和价值如下。

那么请问,在不得超过背包的承重的情况下,将哪些物品放入背包,可以使得总价值最大?

小宇:明白了,就是我用这个背包最多能装走多少钱的东西。

闪客:是的。

小宇:哎呀不行,我又陷入走楼梯时的遍历思想了。

闪客:没关系,这道题能想出遍历思想,其实也不容易了,你可以先说一下,找找感觉。

小宇:嗯嗯,那就是每个物品都可以有放入背包不放入背包两种选择。

如果总重量超过了背包承重,那就不算,或者说将价值记为 0,然后将所有情况中价值最大的那个作为结果。

这样的复杂度也很容易得出,就是 O(2^N)

闪客:没错,这个复杂度很高的算法你已经说的很明白了,那接下来你想想看用动态规划思想,能不能解决这个问题。

小宇:好的,你之前说过,动态规划的三要素是最优子结构、状态转移方程和边界

闪客:没错,之前的变量很少所以比较简单,现在变量多了,定义就变得难了起来,我们先来几个定义方便描述。我们将 4 个物品的重量和价值分别表示为:w1,w2,w3,w4,v1,v2,v3,v4。

假如我们用 

F(W,i) 

表示

用载重为 W 的背包,装前 i 件物品的最大价值

那本题其实就是

用载重为 5kg 的背包,装前 4 件物品的最大价值

其实就是求解 

F(5,4)

你能找到状态转移方程么?

小宇:我想想,单看这个物品 4,有两种可能:

第一种可能:如果选择把它装入背包,那已经得到了 6 元钱。

此时背包剩余载重为 1kg(5kg-4kg),剩余物品是除去物品 4 后的前 3 件物品。

那这部分能获取到的最大价值,相当于

用一个载重为 1kg 的背包,装前 3 件物品的最大价值

哇,那这部分就是

F(1,3)

闪客:哈哈,你这自己说着说着就说对啦!

小宇:所以最终,如果选择将物品 4 放入背包,这种情况下,最大价值就等于二者之和。

F(1, 3) + 6

闪客:太好了小宇,那另一种情况呢?

小宇:第二种可能:如果选择不装这个物品 4,那更简单了,就直接等于用一个载重为 5 的背包装前 3 件物品的价值。

F(5, 3)

闪客:没错,而且就只有这两种情况!所以你看看 F(5,4)是否能用这两种情况的值表示呢?

小宇:哈哈,很简单,就等于这两种情况当中的最大值呗。

F(5,4) = max { F(1, 3) + 6,F(5, 3) }

闪客:太好了,现在状态转移方程出来了,此时我们画个表格。

我们的目标就是要计算右下角那个值,即背包载重 W = 5 时,选择前 4 件物品放入背包的最大价值 F(5,4)

小宇:哇这个表格好清晰呀,根据上面的公式

F(5,4) = max { F(1,3) + 6, F(5,3) }

那也就是说只要知道 F(1,3) 和 F(5,3) 的值就可以了对吧?

闪客:没错,那你再看看 F(1,3) 怎么计算?

小宇:好的,F(1,3) 此时背包重量为 1,如果选择放第三件物品的话,诶?好像不行,第三件物品根本放不下呀!

闪客:是的,所以这种情况就没必要讨论放第三件物品的情况了,因为根本放不下,因此 F(1,3) 直接就等于 F(1,2),所以只需要知道 F(1,2) 即可。

同理 F(1,2) 也直接等于 F(1,1),因为在背包重量为 1 时第二件物品也放不下。

闪客:小宇你想想看,那 F(1,1) 又等于什么呢?

小宇:显然嘛,现在只有一件物品可以选了,那能放下当然就放咯,所以最大价值就是第一件物品的价值 3,即 F(1,1) = 3

闪客:没错,这样我们就找到了一个边界值,小宇你想想看还有哪些边界值可以直接得出?你写在表格里吧。

小宇:好的,首先第一列表示背包重量为 0 时的情况,那显然什么都装不了,就全都是 0 了。

然后第一行也比较好算,背包重量 >= 1 时可以放下第一件物品,所以最大价值都等于 3

闪客:很好,接下来,就依次把表格的所有项都填出来,自然就可以算出 F(5,4) 啦。

小宇:哇塞,这样看好清晰呀!

闪客:是呀,不过刚刚我们用的都是具体的数字,那我们试着把这个问题抽象化,用一个载重为 W 的背包,装载 N 件物品,每件物品的重量和价值分别用 wi 和 vi 来表示,那刚刚的状态转移方程是什么呢?

小宇:emm,刚刚 F(5,4) = max { F(1,3) + 6, F(5,3) },如果都用变量表示的话,就是

F(W,N) = 

max { F(W-wn, N-1) + vn,F(W, N-1) }

闪客:很好,这就是状态转移方程

F(W-wn, N-1) 和 F(W, N-1) 就是 F(W,N) 的最优子结构

而刚刚表格中的第一行和第一列,即 F(0,...) 和 F(...,1) 就是边界值

小宇:哇塞我爱你闪客!终于有点理解动态规划的思想了呢!

04

闪客:别高兴太早,虽然过程看着清晰了,但代码写起来还是有难度的,你今天回去就把代码试着实现一下吧。

小宇:好的,保证完成任务。

闪客:快到晚饭时间了,旁边新开了家饺子馆,要不要一块去吃呀?

小宇:哦不了,晚上想利用晚饭时间再去消化消化动态规划的知识,不是还得代码实现呢么,下次吧,

闪客:哦好吧~

我知道你在看

这篇关于图解 | 你管这破玩意叫动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/621958

相关文章

第10章 中断和动态时钟显示

第10章 中断和动态时钟显示 从本章开始,按照书籍的划分,第10章开始就进入保护模式(Protected Mode)部分了,感觉从这里开始难度突然就增加了。 书中介绍了为什么有中断(Interrupt)的设计,中断的几种方式:外部硬件中断、内部中断和软中断。通过中断做了一个会走的时钟和屏幕上输入字符的程序。 我自己理解中断的一些作用: 为了更好的利用处理器的性能。协同快速和慢速设备一起工作

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

软考系统规划与管理师考试证书含金量高吗?

2024年软考系统规划与管理师考试报名时间节点: 报名时间:2024年上半年软考将于3月中旬陆续开始报名 考试时间:上半年5月25日到28日,下半年11月9日到12日 分数线:所有科目成绩均须达到45分以上(包括45分)方可通过考试 成绩查询:可在“中国计算机技术职业资格网”上查询软考成绩 出成绩时间:预计在11月左右 证书领取时间:一般在考试成绩公布后3~4个月,各地领取时间有所不同

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

轨迹规划-B样条

B样条究竟是干啥的?白话就是给出一堆点,用样条的方式,给这些点连接起来,并保证丝滑的。 同时B样条分为准均匀和非均匀,以下为准均匀为例。 参考链接1:https://zhuanlan.zhihu.com/p/50626506https://zhuanlan.zhihu.com/p/50626506 参考链接2: https://zhuanlan.zhihu.com/p/536470972h

图解TCP三次握手|深度解析|为什么是三次

写在前面 这篇文章我们来讲解析 TCP三次握手。 TCP 报文段 传输控制块TCB:存储了每一个连接中的一些重要信息。比如TCP连接表,指向发送和接收缓冲的指针,指向重传队列的指针,当前的发送和接收序列等等。 我们再来看一下TCP报文段的组成结构 TCP 三次握手 过程 假设有一台客户端,B有一台服务器。最初两端的TCP进程都是处于CLOSED关闭状态,客户端A打开链接,服务器端

PMBOK® 第六版 规划进度管理

目录 读后感—PMBOK第六版 目录 规划进度管理主要关注为整个项目期间的进度管理提供指南和方向。以下是两个案例,展示了进度管理中的复杂性和潜在的冲突: 案例一:近期,一个长期合作的客户因政策要求,急需我们为多家医院升级一个小功能。在这个过程中出现了三个主要问题: 在双方确认接口协议后,客户私自修改接口并未通知我们,直到催进度时才发现这个问题关于UI设计的部分,后台开发人员未将其传递给

LeetCode:64. 最大正方形 动态规划 时间复杂度O(nm)

64. 最大正方形 题目链接 题目描述 给定一个由 0 和 1 组成的二维矩阵,找出只包含 1 的最大正方形,并返回其面积。 示例1: 输入: 1 0 1 0 01 0 1 1 11 1 1 1 11 0 0 1 0输出: 4 示例2: 输入: 0 1 1 0 01 1 1 1 11 1 1 1 11 1 1 1 1输出: 9 解题思路 这道题的思路是使用动态规划