生存分析KM简介

2024-01-19 07:20
文章标签 分析 km 简介 生存

本文主要是介绍生存分析KM简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

生存分析概念及示例代码

  • 1. 以图为例介绍概念
    • 1.1 基础概念
    • 1.2 实际案例
    • 1.3 KM曲线与临床试验关系
  • 2. 学习代码
  • 3. 绘制生存曲线示例

1. 以图为例介绍概念

1.1 基础概念

在这里插入图片描述
① 纵坐标(PFS)
含义:即试验的患者发生死亡/疾病进展时,认为发生了终点事件(event)。
数字:假设100个人在用药组,过了一段时间后总共有30人死亡/疾病进展,则PFS为70%
其他指标:另一个最常用的是OS,终点事件为死亡。
② 横坐标(time)
含义:随机化时间,一般指月份。
③ 图像
两个试验组,谁在上面,说明谁的疗法有效性会更好,说明病人越少、越晚发生了终点事件。
④ 主要结论—右上表
中位PFS:指某条曲线降低突破50%的时候对应的月份。
一年、二年PFS:在1年、2年这些时间节点,PFS的值。
95%CI、数据后的括号:95%的置信区间指在100次重复临床试验中,有95次结果的PFS会落在括号的区间内。更方便估测真实世界的可能结果。
⑤ 主要结论—HR及P值
HR:全称Hazard Ratio,是两个试验组风险率的比值,这个数值与时间无关,是根据一整个试验数据得出的结果。目的是,尽量客观的描述整体的生存曲线位置,而不是仅以单个时间点的PFS决定
默认情况下,HR是试验组风险/对照组风险,因此HR<1,那么就说明试验组能降低风险(试验组药效更好);HR>1,试验组提升了风险。
P值:根据回归方程(常用log-rank),通过一系列HR值,得到一个p值。p值衡大于0,p值小于0.05的时候,说明试验组药效有用。
⑥ at risk人数
在这个时间节点,未删失、未发生终点事件的人群,因为受试者尚且有发生事件的risk,因此被记录为 at risk的人数。
0(28)代表,未发生终点事件人数=0,发生删失的人数=28,发生终点事件的人数=33。

1.2 实际案例

在这里插入图片描述

① 试验组相对于对照组的药效有极显著性差异(p<0.0001)
② 风险比(0.59)<1,95%置信区间也都<1,试验组风险率是对照组风险率的一半,说明试验组能降低终点事件发生的风险。
③ 中位PFS结果、at risk人数结果展示。

1.3 KM曲线与临床试验关系

① 临床试验开展过程中,部分患者无法记录终点事件
在这里插入图片描述
② 临床试验以时间维度,每个患者的状态
红色死亡、+号删失、绿色代表尚未发生终点事件
在这里插入图片描述

③ 临床试验结果与KM曲线的对应关系
在这里插入图片描述

2. 学习代码

具体可按照 R语言生存曲线的可视化(超详细) 复现。

3. 绘制生存曲线示例

library("survival")
library("survminer")survival <- read.csv("survival.xls", sep = "\t", fileEncoding = "GBK")# survival示例
baseline_ddr_sample	Progression=1	PFS(months)	Death=1	OS(months)
1	1	8.37	1	9.57## 3.1 OS ------------------------------------------------------------------
# 创建生存对象 OS是time, progressin是event
surv_obj <- Surv(time = survival$OS.months., event = survival$Death.1)# 拟合生存曲线
fit <- survfit(surv_obj ~ baseline_ddr_sample, data = survival)
print(fit)# 查看看完整的生存表格
summary(fit)
summary(fit)$tabled <- data.frame(time = fit$time,n.risk = fit$n.risk,n.event = fit$n.event,n.censor = fit$n.censor,surv = fit$surv,upper = fit$upper,lower = fit$lower
)
head(d)#按分层更改图形颜色,线型等
ggsurvplot(fit,pval = TRUE, conf.int = TRUE,risk.table = TRUE, # 添加风险表risk.table.col = "strata", # 根据分层更改风险表颜色linetype = "strata", # 根据分层更改线型surv.median.line = "hv", # 同时显示垂直和水平参考线ggtheme = theme_bw(), # 更改ggplot2的主题palette = c("#E7B800", "#2E9FDF"), #定义颜色title = "OS of Survival Curve",xlab = "Time(Months)")## 3.2 PFS -----------------------------------------------------------------
surv_obj <- Surv(time = survival$PFS.months., event = survival$Progression.1)
fit <- survfit(surv_obj ~ baseline_ddr_sample, data = survival)d <- data.frame(time = fit$time,n.risk = fit$n.risk,n.event = fit$n.event,n.censor = fit$n.censor,surv = fit$surv,upper = fit$upper,lower = fit$lower
)
head(d)#按分层更改图形颜色,线型等
ggsurvplot(fit,pval = TRUE, conf.int = TRUE,risk.table = TRUE, # 添加风险表risk.table.col = "strata", # 根据分层更改风险表颜色linetype = "strata", # 根据分层更改线型surv.median.line = "hv", # 同时显示垂直和水平参考线ggtheme = theme_bw(), # 更改ggplot2的主题palette = c("#E7B800", "#2E9FDF"), #定义颜色title = "PFS of Survival Curve",xlab = "Time(Months)")

参考文件:
(1)R语言生存曲线的可视化(超详细)
(2)一文快速看懂生存曲线(KM曲线)

这篇关于生存分析KM简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/621647

相关文章

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57