深度学习---三好学生各成绩所占权重问题(3)

2024-01-19 06:10

本文主要是介绍深度学习---三好学生各成绩所占权重问题(3),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝

🥰 博客首页:knighthood2001

😗 欢迎点赞👍评论🗨️

❤️ 热爱python,期待与大家一同进步成长!!❤️

        之前,我们从三好学生成绩问题开始,设计出了解决该问题的神经网络模型,但是这个模型更多的是从一般的思维方式来设计的,这与神经网络通常设计中的思路并不一致,因此本文章,我们来看看如何优化该模型,让它的逻辑更清晰、运行更高效。

目录

全部代码

代码讲解 

结果展示 


全部代码

import tensorflow as tftf.compat.v1.disable_eager_execution()x = tf.compat.v1.placeholder(shape=[3], dtype=tf.float32)
yTrain = tf.compat.v1.placeholder(shape=[], dtype=tf.float32)w = tf.Variable(tf.zeros([3]), dtype=tf.float32)n = x * wy = tf.reduce_sum(n)loss = tf.abs(y - yTrain)optimizer = tf.compat.v1.train.RMSPropOptimizer(0.001)train = optimizer.minimize(loss)sess = tf.compat.v1.Session()init = tf.compat.v1.global_variables_initializer()sess.run(init)for i in range(5000):result = sess.run([train, x, w, y, yTrain, loss], feed_dict={x: [90, 80, 70], yTrain: 85})print(result)result = sess.run([train, x, w, y, yTrain, loss], feed_dict={x:[98, 95, 87], yTrain: 96})print(result)

代码讲解 

        之前设计的神经网络模型中,把学生的德育、智育、体育3项分数分别对应x1、x2、x3这了个输入层的节点,这样本身没有问题,但是假设又增加了一个艺术分数, 那么就需要在输入层增加一个x4节点,在隐藏层对应的也要增加一个n4节点。也就是说,输入数据改变时,即使整套逻辑没有变,也要去修改整个网络模型,比较麻烦。

        另外,节点数多了也会让模型图看起来比较复杂。所以在通常的神经网络中,很多时候会把这种串的数据组织成一个 “向量”来送入神经网络进行计算。这里的“向量”与数学几何中的向量概念稍有不同,就是指一串数字,在程序中用一个数组来表示,例如,三好学生成绩问题中第一个学生的3项分数可以用[90, 80, 70]这样一个数组就表示出来了。数组是有顺序的,可以约定第一项代表德育分、 第二项代表智育分、 第三项代表体育分。向量中有几个数字,一般就把它叫作几“维”的向量,例如刚才这个向量就是一个三维向量。

x1 = tf.compat.v1.placeholder(dtype=tf.float32)
x2 = tf.compat.v1.placeholder(dtype=tf.float32)
x3 = tf.compat.v1.placeholder(dtype=tf.float32)

改成了一个三维的向量存入变量x

x = tf.compat.v1.placeholder(shape=[3], dtype=tf.float32)

 变量x的定义语句稍有不同,其中增加了一个命名参数shape,这是表示变量x的形态的,它的取值是“[3]”, 表示输入占位符x的数据将是一个有3个数字的数组,也就是一个三维向量。 

w1、w2、w3这3个可变参数也被缩减成了一个三维向量w:

w = tf.Variable(tf.zeros([3]), dtype=tf.float32)

其中tf.Variable函数的第一个参数还是定义这个可变参数的初始值,由于x是一个形态为[3]的三维向量,w也需要相应地是一个形态为[3]的三维向量,而我们用tf.zeros这个函数可以生成一个值全为0的向量,也就是说tf.zeros([3])的返回值将是一个数组[0, 0, 0],这个向量将作为w的初始值。 

yTrain因为只是一个普通数字,不是向量,如果要给它个形态的话, 可以用一个空的方括号“[]”来代表。 

yTrain = tf.compat.v1.placeholder(shape=[], dtype=tf.float32)

隐藏层节点变量n1、n2、n3也被缩减成一个变量 n: 

n = x * w

假设输入数据x为[90, 80, 70],也就是第一位学生的3项分数,此时w为[2,3,4],那么n=x*W的运算结果就是[90 * 2, 80* 3, 70* 4],即[180, 240,280]。这是因为“*”代表数学中矩阵运算的“点乘”,点乘是指两个形态相同的矩阵中每个相同位置的数字相乘,结果还是和这两个矩阵形态都样的矩阵。向量的点乘与矩阵点乘的方法是一样的, 所以x * w的计算结果还是与x或w相同形态的三维向量,其中第一维的结果是 x中的第一维的数字 90乘以w中的第一维的数字2, 即90*2得到180,后面依此类推

由于我们把原来3个隐藏层节点n、n2、n3缩减成了一个向量 n,输出层节点y的计算也要做出改变: 

y = tf.reduce_sum(n)

tf.reduce sum函数的作用是把作为它的参数的向量(以后还可能会是矩阵)中的所有维度的值相加求和,与原来y=n1 +n2 + n3的含义是相同的。

    result = sess.run([train, x, w, y, yTrain, loss], feed_dict={x: [90, 80, 70], yTrain: 85})print(result)result = sess.run([train, x, w, y, yTrain, loss], feed_dict={x:[98, 95, 87], yTrain: 96})print(result)

最后这里改变一下即可 

结果展示 

我们最终重复循环训练5000次

看最后的几条结果,我们可以看到,误差也被控制到很小的范围,3个权重也分别接近预期值。 

这篇关于深度学习---三好学生各成绩所占权重问题(3)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/621478

相关文章

Flask解决指定端口无法生效问题

《Flask解决指定端口无法生效问题》文章讲述了在使用PyCharm开发Flask应用时,启动地址与手动指定的IP端口不一致的问题,通过修改PyCharm的运行配置,将Flask项目的运行模式从Fla... 目录android问题重现解决方案问题重现手动指定的IP端口是app.run(host='0.0.

Seata之分布式事务问题及解决方案

《Seata之分布式事务问题及解决方案》:本文主要介绍Seata之分布式事务问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Seata–分布式事务解决方案简介同类产品对比环境搭建1.微服务2.SQL3.seata-server4.微服务配置事务模式1

mysql关联查询速度慢的问题及解决

《mysql关联查询速度慢的问题及解决》:本文主要介绍mysql关联查询速度慢的问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql关联查询速度慢1. 记录原因1.1 在一次线上的服务中1.2 最终发现2. 解决方案3. 具体操作总结mysql

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

Spring MVC跨域问题及解决

《SpringMVC跨域问题及解决》:本文主要介绍SpringMVC跨域问题及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录跨域问题不同的域同源策略解决方法1.CORS2.jsONP3.局部解决方案4.全局解决方法总结跨域问题不同的域协议、域名、端口

SpringBoot自定义注解如何解决公共字段填充问题

《SpringBoot自定义注解如何解决公共字段填充问题》本文介绍了在系统开发中,如何使用AOP切面编程实现公共字段自动填充的功能,从而简化代码,通过自定义注解和切面类,可以统一处理创建时间和修改时间... 目录1.1 问题分析1.2 实现思路1.3 代码开发1.3.1 步骤一1.3.2 步骤二1.3.3

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

基于.NET编写工具类解决JSON乱码问题

《基于.NET编写工具类解决JSON乱码问题》在开发过程中,我们经常会遇到JSON数据处理的问题,尤其是在数据传输和解析过程中,很容易出现编码错误导致的乱码问题,下面我们就来编写一个.NET工具类来解... 目录问题背景核心原理工具类实现使用示例总结在开发过程中,我们经常会遇到jsON数据处理的问题,尤其是

springboot3.4和mybatis plus的版本问题的解决

《springboot3.4和mybatisplus的版本问题的解决》本文主要介绍了springboot3.4和mybatisplus的版本问题的解决,主要由于SpringBoot3.4与MyBat... 报错1:spring-boot-starter/3.4.0/spring-boot-starter-

在 Spring Boot 中使用异步线程时的 HttpServletRequest 复用问题记录

《在SpringBoot中使用异步线程时的HttpServletRequest复用问题记录》文章讨论了在SpringBoot中使用异步线程时,由于HttpServletRequest复用导致... 目录一、问题描述:异步线程操作导致请求复用时 Cookie 解析失败1. 场景背景2. 问题根源二、问题详细分