深度学习---三好学生各成绩所占权重问题(2)

2024-01-19 06:10

本文主要是介绍深度学习---三好学生各成绩所占权重问题(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝🔝

🥰 博客首页:knighthood2001

😗 欢迎点赞👍评论🗨️

❤️ 热爱python,期待与大家一同进步成长!!❤️

👀给大家推荐一款很火爆的刷题、面试求职网站👀

上文中深度学习(初识tensorflow2.版本)之三好学生成绩问题(1) 我们可以发现,搭建的神经网络已经可以运行,但显然还不能真正使用,因为它最终的计算结果是存在误差的。神经网络在投入使用前,都要经过训练的过程。那么,如何来训练神经网络呢?

目录

训练神经网络步骤步骤

代码展示

变化之处


训练神经网络步骤步骤


输入数据:例如例子中输入的x1、x2、x3,也就是两位学生各自的德育、智育、体育3项分数。

计算结果:神经网络根据输入的数据和当前的可变参数值计算出结果,本文例子中为y

计算误差:将计算出来的结果y与我们期待的结果( 或者说标准答案,把它暂时称为yTrain进行比对,看看误差(loss)是多少;在例子中,yTrain 的值也就是两位学生各自已知的总分。

调整神经网络可变参数:根据误差的大小,使用反向传播算法,对神经网络中的可变参数(也就是本章例子中的w1、w2、w3)进行相应的调节。

再次训练:在调整完可变参数后,重复上述步骤重新进行训练,直至误差低于我们的理想水平,神经网络的训练就完成了。


上篇文章编写的程序已经实现了这个流程中的前两个步骤,下面我们来实现剩余的步骤。


代码展示

import tensorflow as tftf.compat.v1.disable_eager_execution()x1 = tf.compat.v1.placeholder(dtype=tf.float32)
x2 = tf.compat.v1.placeholder(dtype=tf.float32)
x3 = tf.compat.v1.placeholder(dtype=tf.float32)# 设置标准答案
yTrain = tf.compat.v1.placeholder(dtype=tf.float32)w1 = tf.Variable(0.1, dtype=tf.float32)
w2 = tf.Variable(0.1, dtype=tf.float32)
w3 = tf.Variable(0.1, dtype=tf.float32)n1 = x1 * w1
n2 = x2 * w2
n3 = x3 * w3y = n1 + n2 + n3loss = tf.abs(y - yTrain)optimizer = tf.compat.v1.train.RMSPropOptimizer(0.001)train = optimizer.minimize(loss)sess = tf.compat.v1.Session()init = tf.compat.v1.global_variables_initializer()sess.run(init)for i in range(10000):result = sess.run([train, x1, x2, x3, w1, w2, w3, y, yTrain, loss], feed_dict={x1: 90, x2: 80, x3: 70, yTrain: 85})print(result)result = sess.run([train, x1, x2, x3, w1, w2, w3, y, yTrain, loss], feed_dict={x1: 98, x2: 95, x3: 87, yTrain: 96})print(result)

变化之处

①定义了占位符yTrain,这是用来在训练时传入争对每一组输入数据我们期待的对应计算结果值的,后面一般把它简称为“目标计算结果”或“目标值”。

# 目标计算结果(目标值)
yTrain = tf.compat.v1.placeholder(dtype=tf.float32)

在计算出结果y后,我们用tf.abs(y-yTrain)来计算误差,

然后定义了一个优化器变量optimizer。所谓优化器,就是用来调整神经网络可变参数的对象。我们采用的是RMSPropOptimizer,参数0.001是这个优化器的学习率(learn rate)。所谓学习率,我们在这里可以先简单的理解为:学习率决定了优化器每次调整参数的幅度大小。

定义完优化器后,我们又定义了一个训练对象train,它代表了我们准备如何来训练这个神经网络。我们把它定义为optimizer.minimize(loss),也就是要求优化器按照把loss最小化的原则来调整可变参数。

loss = tf.abs(y - yTrain)optimizer = tf.compat.v1.train.RMSPropOptimizer(0.001)train = optimizer.minimize(loss)

接下来我们就可以进行训练了,训练的代码和之前计算的很相似。

for i in range(10000):result = sess.run([train, x1, x2, x3, w1, w2, w3, y, yTrain, loss], feed_dict={x1: 90, x2: 80, x3: 70, yTrain: 85})print(result)result = sess.run([train, x1, x2, x3, w1, w2, w3, y, yTrain, loss], feed_dict={x1: 98, x2: 95, x3: 87, yTrain: 96})print(result)

不同之处主要有两个,是在feed_dict参数中多指定一个yTrain的数值,也就是对应每一组输入数据x1,x2,x3,我们指定的目标结果值;是在sess.run函数的第一个参数,也就是我们要求输出的结果数组当中,多加了一个train对象,在结果数组中有train对象,意味着要求程序要执行train对象所包含的训练过程,那么在这个过程中,y、loss等计算结果自然也会被计算出来;所以在结果数组中即使只写一个train,其他的结果也会都被计算出来。只不过我们看不到而已。

只有在结果数组中加上了训练对象,这次sess.run函数的执行才能被称为一次“训练”,否则只是“运行”一次神经网络或者说是用神经网络进行一次“计算”。

尽管两次训练的x1,x2,x3不同,但是神经网络的训练具备适应能力,能够在训练过程中逐步调整可变参数,试图去缩小所有输入数据的计算结果误差。

我们采用for循环,来个5000轮。最后两条结果如下:

loss缩小到0.023246765-0.0332489,w1,w2,w3的数值也很接近我们期待的0.6,0.3,0.1(我们之前假设的权重)。

之后,笔者将会讲解如何优化这里的神经网络模型。

这篇关于深度学习---三好学生各成绩所占权重问题(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/621477

相关文章

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Pyserial设置缓冲区大小失败的问题解决

《Pyserial设置缓冲区大小失败的问题解决》本文主要介绍了Pyserial设置缓冲区大小失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录问题描述原因分析解决方案问题描述使用set_buffer_size()设置缓冲区大小后,buf

resultMap如何处理复杂映射问题

《resultMap如何处理复杂映射问题》:本文主要介绍resultMap如何处理复杂映射问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录resultMap复杂映射问题Ⅰ 多对一查询:学生——老师Ⅱ 一对多查询:老师——学生总结resultMap复杂映射问题

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

如何解决mmcv无法安装或安装之后报错问题

《如何解决mmcv无法安装或安装之后报错问题》:本文主要介绍如何解决mmcv无法安装或安装之后报错问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mmcv无法安装或安装之后报错问题1.当我们运行YOwww.chinasem.cnLO时遇到2.找到下图所示这里3.

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Vue3使用router,params传参为空问题

《Vue3使用router,params传参为空问题》:本文主要介绍Vue3使用router,params传参为空问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录vue3使用China编程router,params传参为空1.使用query方式传参2.使用 Histo