Chapter 3:有限Markov决策过程

2024-01-18 14:10

本文主要是介绍Chapter 3:有限Markov决策过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Chapter 3:Finite Markov Decision Processes

  • 2.1 Agent–Environment交互
    • Markov transition graph
  • 3.2 Goals and Rewards
    • 3.2.1 returns and episodes
    • 3.2.2 episodic tasks和continuing tasks的统一表示
  • 3.3 Policy and Value function
  • 3.4 Optimal Policies and Optimal Value Functions
  • 3.5 Optimality and Approximation

有限MDPs问题和老虎机问题一样,也是评价性反馈,但是和bandit问题不同的是,MDPs问题除了immediate reward还涉及到delayed reward,需要在直接奖励和延迟奖励之间权衡。

在bandit问题中,估计的是每个动作 a a a的value q ∗ ( a ) q_*(a) q(a);在MDPs中,估计的是每个状态 s s s下的每个动作 a a a的value q ∗ ( s , a ) q_*(s,a) q(s,a),或者估计给定最佳动作选择后每个状态的value v ∗ ( s ) v_*(s) v(s)

本章介绍了MDPs问题的数学结构的关键元素:如returns,value function,Bellman equation。函数和Bellman方程。与所有人工智能一样,该问题在适用范围和数学易处理性之间存在着一种权衡。

2.1 Agent–Environment交互

在这里插入图片描述
事件发生顺序:
在这里插入图片描述
在有限MDPs中,状态、动作和奖励 ( S , A , R ) (\mathcal{S,A,R} ) (S,A,R)集合都具有有限数量的元素。因此,随机变量 R t R_t Rt S t S_t St具有明确定义的离散概率分布,仅取决于先前的状态和动作。
在这里插入图片描述
函数 p : S × R × S × A → [ 0 , 1 ] p:\mathcal{S\times R\times S\times A} \rightarrow[0,1] p:S×R×S×A[0,1]是含有四个参数的普通确定性函数。函数 p p p表征了MDPs的动态。
在这里插入图片描述
Markov property: 状态 s s s必须包含有关过去的agent-environment互动的所有信息。本书假设该性质成立。

根据带有4个参数的函数 p p p,可以推导出其他有关environment的函数:
state-transition probabilities:
含有3个参数的函数 p : S × S × A → [ 0 , 1 ] p:\mathcal{S\times S\times A} \rightarrow[0,1] p:S×S×A[0,1]
在这里插入图片描述
expected rewards for state–action pairs:
含有2个参数的函数 p : S × A → R p:\mathcal{S\times A} \rightarrow \mathbb R p:S×AR
在这里插入图片描述
expected rewards for state–action-next state triples:
含有3个参数的函数 p : S × A × S → R p:\mathcal{S\times A \times S} \rightarrow \mathbb R p:S×A×SR
在这里插入图片描述

Markov transition graph

在这里插入图片描述
图种有两种节点:state nodes和action nodes

3.2 Goals and Rewards

如果采取的动作不仅有直接奖励,还有延迟奖励,那么目标变为最大化该行动带来的奖励(reward)累积和的期望价值(expected value)。
理解:最大化收到的reward总和(in the long run)。

3.2.1 returns and episodes

return G t G_t Gt:step t t t之后的收到的rewards之和
G t = R t + 1 + R t + 2 + . . . + R T ( 3.7 ) G_t=R_{t+1}+R_{t+2}+...+R_T(3.7) Gt=Rt+1+Rt+2+...+RT3.7

episodes:
当agent-environment交互能自然地分解为子序列时,把子序列叫作episodes,有些文献中也叫trials。
terminal state: 每个episode每集的结束状态。所有episodes都可以被认为是以相同的终端状态结束,但是对不同的结果有不同的奖励。
episodic tasks: 包括多个episodes的tasks。 S \mathcal S S表示非终结状态的集合, S + \mathcal S^+ S+表示非终结状态加终结状态的集合。终止时间 T T T是随机变量,根据不同的episode 变化。

continuing tasks: 不能被分解成episodes的tasks,实际情况中很多都是连续任务,此时式(3.7)不再适用,因为 T = ∞ T=\infin T=

所以我们用了一个稍微复杂一点的return定义,引入了discounting,便于计算。

折现
选择 A t A_t At最大化expected discounted return:
在这里插入图片描述
γ ∈ [ 0 , 1 ] \gamma\in [0,1] γ[0,1]:折现率
γ &lt; 1 \gamma&lt;1 γ<1:如果 R k R_k Rk有限,式(3.8)是有限。
γ = 0 \gamma=0 γ=0:myopic,只考虑了直接奖励。
γ \gamma γ越接近1,说明越有远见,考虑future reward越多。

递推关系:
在这里插入图片描述

3.2.2 episodic tasks和continuing tasks的统一表示

对于episodic tasks来说,虽然又很多个episodes,但是我们通常只考虑其中单个的episode。
所以可以统一表示为:
在这里插入图片描述
其中,KaTeX parse error: Expected 'EOF', got '\infine' at position 3: T=\̲i̲n̲f̲i̲n̲e̲表示continuing tasks; γ = 1 \gamma=1 γ=1表示episodic tasks。两个条件不能同时满足。

3.3 Policy and Value function

policy: 从状态到选择每个可能动作的概率的映射。 例如:现在有policy π \pi π,则 π ( a ∣ s ) \pi(a|s) π(as)表示 S t = s S_t=s St=s A t = a A_t=a At=a的概率。

value function: 在policy π \pi π 和state s s s 下的expected return记作 v π ( s ) v_\pi(s) vπ(s)
在这里插入图片描述
在这里插入图片描述
v π v_\pi vπ是policy π \pi π 的state-value function; q π q_\pi qπ是policy π \pi π 的action-value function。

Bellman equation: 在policy π \pi π 和state s s s 下的expected return记作 v π ( s ) v_\pi(s) vπ(s)
在这里插入图片描述
式(3.14)是 v π v_\pi vπ的Bellman Equation,表示一个state价值与其下一阶段的state价值之间的关系。

3.4 Optimal Policies and Optimal Value Functions

optimal state-value function:
在这里插入图片描述
optimal action-value function:
在这里插入图片描述
对于state-action pair s , a s,a s,a,函数 q ∗ ( s , a ) q_*(s,a) q(s,a)表示在状态 s s s中执行动作 a a a并且此后遵循最优策略 π \pi π的expected return。因此, q ∗ q_* q可以用 v ∗ v_* v表示:
在这里插入图片描述
Bellman optimality equation:
含义:最优policy下的state value必须等于该state下的最佳action的expected return。
在这里插入图片描述
Bellman optimality equation for v ∗ v_* v:式(3.18)与式(3.19)
Bellman optimality equation for q ∗ q_* q:式(3.20)
在这里插入图片描述

3.5 Optimality and Approximation

因为很多原因,现实中可能无法得到最优解policy,此时就需要近似。强化学习的Online性质使得有可能以更多的方式接近最优策略,以便为频繁出现的state做出正确的决策,而不用考虑到出现频率低的state。这是将强化学习与其他近似解决MDP的方法区分开来的一个关键属性。

这篇关于Chapter 3:有限Markov决策过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/619235

相关文章

将Mybatis升级为Mybatis-Plus的详细过程

《将Mybatis升级为Mybatis-Plus的详细过程》本文详细介绍了在若依管理系统(v3.8.8)中将MyBatis升级为MyBatis-Plus的过程,旨在提升开发效率,通过本文,开发者可实现... 目录说明流程增加依赖修改配置文件注释掉MyBATisConfig里面的Bean代码生成使用IDEA生

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

SpringCloud之LoadBalancer负载均衡服务调用过程

《SpringCloud之LoadBalancer负载均衡服务调用过程》:本文主要介绍SpringCloud之LoadBalancer负载均衡服务调用过程,具有很好的参考价值,希望对大家有所帮助,... 目录前言一、LoadBalancer是什么?二、使用步骤1、启动consul2、客户端加入依赖3、以服务

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

Spring Security注解方式权限控制过程

《SpringSecurity注解方式权限控制过程》:本文主要介绍SpringSecurity注解方式权限控制过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、摘要二、实现步骤2.1 在配置类中添加权限注解的支持2.2 创建Controller类2.3 Us

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

SpringBoot集成图片验证码框架easy-captcha的详细过程

《SpringBoot集成图片验证码框架easy-captcha的详细过程》本文介绍了如何将Easy-Captcha框架集成到SpringBoot项目中,实现图片验证码功能,Easy-Captcha是... 目录SpringBoot集成图片验证码框架easy-captcha一、引言二、依赖三、代码1. Ea