Chapter 3:有限Markov决策过程

2024-01-18 14:10

本文主要是介绍Chapter 3:有限Markov决策过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Chapter 3:Finite Markov Decision Processes

  • 2.1 Agent–Environment交互
    • Markov transition graph
  • 3.2 Goals and Rewards
    • 3.2.1 returns and episodes
    • 3.2.2 episodic tasks和continuing tasks的统一表示
  • 3.3 Policy and Value function
  • 3.4 Optimal Policies and Optimal Value Functions
  • 3.5 Optimality and Approximation

有限MDPs问题和老虎机问题一样,也是评价性反馈,但是和bandit问题不同的是,MDPs问题除了immediate reward还涉及到delayed reward,需要在直接奖励和延迟奖励之间权衡。

在bandit问题中,估计的是每个动作 a a a的value q ∗ ( a ) q_*(a) q(a);在MDPs中,估计的是每个状态 s s s下的每个动作 a a a的value q ∗ ( s , a ) q_*(s,a) q(s,a),或者估计给定最佳动作选择后每个状态的value v ∗ ( s ) v_*(s) v(s)

本章介绍了MDPs问题的数学结构的关键元素:如returns,value function,Bellman equation。函数和Bellman方程。与所有人工智能一样,该问题在适用范围和数学易处理性之间存在着一种权衡。

2.1 Agent–Environment交互

在这里插入图片描述
事件发生顺序:
在这里插入图片描述
在有限MDPs中,状态、动作和奖励 ( S , A , R ) (\mathcal{S,A,R} ) (S,A,R)集合都具有有限数量的元素。因此,随机变量 R t R_t Rt S t S_t St具有明确定义的离散概率分布,仅取决于先前的状态和动作。
在这里插入图片描述
函数 p : S × R × S × A → [ 0 , 1 ] p:\mathcal{S\times R\times S\times A} \rightarrow[0,1] p:S×R×S×A[0,1]是含有四个参数的普通确定性函数。函数 p p p表征了MDPs的动态。
在这里插入图片描述
Markov property: 状态 s s s必须包含有关过去的agent-environment互动的所有信息。本书假设该性质成立。

根据带有4个参数的函数 p p p,可以推导出其他有关environment的函数:
state-transition probabilities:
含有3个参数的函数 p : S × S × A → [ 0 , 1 ] p:\mathcal{S\times S\times A} \rightarrow[0,1] p:S×S×A[0,1]
在这里插入图片描述
expected rewards for state–action pairs:
含有2个参数的函数 p : S × A → R p:\mathcal{S\times A} \rightarrow \mathbb R p:S×AR
在这里插入图片描述
expected rewards for state–action-next state triples:
含有3个参数的函数 p : S × A × S → R p:\mathcal{S\times A \times S} \rightarrow \mathbb R p:S×A×SR
在这里插入图片描述

Markov transition graph

在这里插入图片描述
图种有两种节点:state nodes和action nodes

3.2 Goals and Rewards

如果采取的动作不仅有直接奖励,还有延迟奖励,那么目标变为最大化该行动带来的奖励(reward)累积和的期望价值(expected value)。
理解:最大化收到的reward总和(in the long run)。

3.2.1 returns and episodes

return G t G_t Gt:step t t t之后的收到的rewards之和
G t = R t + 1 + R t + 2 + . . . + R T ( 3.7 ) G_t=R_{t+1}+R_{t+2}+...+R_T(3.7) Gt=Rt+1+Rt+2+...+RT3.7

episodes:
当agent-environment交互能自然地分解为子序列时,把子序列叫作episodes,有些文献中也叫trials。
terminal state: 每个episode每集的结束状态。所有episodes都可以被认为是以相同的终端状态结束,但是对不同的结果有不同的奖励。
episodic tasks: 包括多个episodes的tasks。 S \mathcal S S表示非终结状态的集合, S + \mathcal S^+ S+表示非终结状态加终结状态的集合。终止时间 T T T是随机变量,根据不同的episode 变化。

continuing tasks: 不能被分解成episodes的tasks,实际情况中很多都是连续任务,此时式(3.7)不再适用,因为 T = ∞ T=\infin T=

所以我们用了一个稍微复杂一点的return定义,引入了discounting,便于计算。

折现
选择 A t A_t At最大化expected discounted return:
在这里插入图片描述
γ ∈ [ 0 , 1 ] \gamma\in [0,1] γ[0,1]:折现率
γ &lt; 1 \gamma&lt;1 γ<1:如果 R k R_k Rk有限,式(3.8)是有限。
γ = 0 \gamma=0 γ=0:myopic,只考虑了直接奖励。
γ \gamma γ越接近1,说明越有远见,考虑future reward越多。

递推关系:
在这里插入图片描述

3.2.2 episodic tasks和continuing tasks的统一表示

对于episodic tasks来说,虽然又很多个episodes,但是我们通常只考虑其中单个的episode。
所以可以统一表示为:
在这里插入图片描述
其中,KaTeX parse error: Expected 'EOF', got '\infine' at position 3: T=\̲i̲n̲f̲i̲n̲e̲表示continuing tasks; γ = 1 \gamma=1 γ=1表示episodic tasks。两个条件不能同时满足。

3.3 Policy and Value function

policy: 从状态到选择每个可能动作的概率的映射。 例如:现在有policy π \pi π,则 π ( a ∣ s ) \pi(a|s) π(as)表示 S t = s S_t=s St=s A t = a A_t=a At=a的概率。

value function: 在policy π \pi π 和state s s s 下的expected return记作 v π ( s ) v_\pi(s) vπ(s)
在这里插入图片描述
在这里插入图片描述
v π v_\pi vπ是policy π \pi π 的state-value function; q π q_\pi qπ是policy π \pi π 的action-value function。

Bellman equation: 在policy π \pi π 和state s s s 下的expected return记作 v π ( s ) v_\pi(s) vπ(s)
在这里插入图片描述
式(3.14)是 v π v_\pi vπ的Bellman Equation,表示一个state价值与其下一阶段的state价值之间的关系。

3.4 Optimal Policies and Optimal Value Functions

optimal state-value function:
在这里插入图片描述
optimal action-value function:
在这里插入图片描述
对于state-action pair s , a s,a s,a,函数 q ∗ ( s , a ) q_*(s,a) q(s,a)表示在状态 s s s中执行动作 a a a并且此后遵循最优策略 π \pi π的expected return。因此, q ∗ q_* q可以用 v ∗ v_* v表示:
在这里插入图片描述
Bellman optimality equation:
含义:最优policy下的state value必须等于该state下的最佳action的expected return。
在这里插入图片描述
Bellman optimality equation for v ∗ v_* v:式(3.18)与式(3.19)
Bellman optimality equation for q ∗ q_* q:式(3.20)
在这里插入图片描述

3.5 Optimality and Approximation

因为很多原因,现实中可能无法得到最优解policy,此时就需要近似。强化学习的Online性质使得有可能以更多的方式接近最优策略,以便为频繁出现的state做出正确的决策,而不用考虑到出现频率低的state。这是将强化学习与其他近似解决MDP的方法区分开来的一个关键属性。

这篇关于Chapter 3:有限Markov决策过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/619235

相关文章

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Java Kafka消费者实现过程

《JavaKafka消费者实现过程》Kafka消费者通过KafkaConsumer类实现,核心机制包括偏移量管理、消费者组协调、批量拉取消息及多线程处理,手动提交offset确保数据可靠性,自动提交... 目录基础KafkaConsumer类分析关键代码与核心算法2.1 订阅与分区分配2.2 拉取消息2.3

AOP编程的基本概念与idea编辑器的配合体验过程

《AOP编程的基本概念与idea编辑器的配合体验过程》文章简要介绍了AOP基础概念,包括Before/Around通知、PointCut切入点、Advice通知体、JoinPoint连接点等,说明它们... 目录BeforeAroundAdvise — 通知PointCut — 切入点Acpect — 切面

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

Nginx添加内置模块过程

《Nginx添加内置模块过程》文章指导如何检查并添加Nginx的with-http_gzip_static模块:确认该模块未默认安装后,需下载同版本源码重新编译,备份替换原有二进制文件,最后重启服务验... 目录1、查看Nginx已编辑的模块2、Nginx官网查看内置模块3、停止Nginx服务4、Nginx

Jenkins的安装与简单配置过程

《Jenkins的安装与简单配置过程》本文简述Jenkins在CentOS7.3上安装流程,包括Java环境配置、RPM包安装、修改JENKINS_HOME路径及权限、启动服务、插件安装与系统管理设置... 目录www.chinasem.cnJenkins安装访问并配置JenkinsJenkins配置邮件通知

Conda国内镜像源及配置过程

《Conda国内镜像源及配置过程》文章介绍Conda镜像源使用方法,涵盖临时指定单个/多个源、永久配置及恢复默认设置,同时说明main(官方稳定)、free(逐渐弃用)、conda-forge(社区更... 目录一、Conda国内镜像源二、Conda临时使用镜像源指定单个源临时指定多个源创建环境时临时指定源