Chapter 3:有限Markov决策过程

2024-01-18 14:10

本文主要是介绍Chapter 3:有限Markov决策过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Chapter 3:Finite Markov Decision Processes

  • 2.1 Agent–Environment交互
    • Markov transition graph
  • 3.2 Goals and Rewards
    • 3.2.1 returns and episodes
    • 3.2.2 episodic tasks和continuing tasks的统一表示
  • 3.3 Policy and Value function
  • 3.4 Optimal Policies and Optimal Value Functions
  • 3.5 Optimality and Approximation

有限MDPs问题和老虎机问题一样,也是评价性反馈,但是和bandit问题不同的是,MDPs问题除了immediate reward还涉及到delayed reward,需要在直接奖励和延迟奖励之间权衡。

在bandit问题中,估计的是每个动作 a a a的value q ∗ ( a ) q_*(a) q(a);在MDPs中,估计的是每个状态 s s s下的每个动作 a a a的value q ∗ ( s , a ) q_*(s,a) q(s,a),或者估计给定最佳动作选择后每个状态的value v ∗ ( s ) v_*(s) v(s)

本章介绍了MDPs问题的数学结构的关键元素:如returns,value function,Bellman equation。函数和Bellman方程。与所有人工智能一样,该问题在适用范围和数学易处理性之间存在着一种权衡。

2.1 Agent–Environment交互

在这里插入图片描述
事件发生顺序:
在这里插入图片描述
在有限MDPs中,状态、动作和奖励 ( S , A , R ) (\mathcal{S,A,R} ) (S,A,R)集合都具有有限数量的元素。因此,随机变量 R t R_t Rt S t S_t St具有明确定义的离散概率分布,仅取决于先前的状态和动作。
在这里插入图片描述
函数 p : S × R × S × A → [ 0 , 1 ] p:\mathcal{S\times R\times S\times A} \rightarrow[0,1] p:S×R×S×A[0,1]是含有四个参数的普通确定性函数。函数 p p p表征了MDPs的动态。
在这里插入图片描述
Markov property: 状态 s s s必须包含有关过去的agent-environment互动的所有信息。本书假设该性质成立。

根据带有4个参数的函数 p p p,可以推导出其他有关environment的函数:
state-transition probabilities:
含有3个参数的函数 p : S × S × A → [ 0 , 1 ] p:\mathcal{S\times S\times A} \rightarrow[0,1] p:S×S×A[0,1]
在这里插入图片描述
expected rewards for state–action pairs:
含有2个参数的函数 p : S × A → R p:\mathcal{S\times A} \rightarrow \mathbb R p:S×AR
在这里插入图片描述
expected rewards for state–action-next state triples:
含有3个参数的函数 p : S × A × S → R p:\mathcal{S\times A \times S} \rightarrow \mathbb R p:S×A×SR
在这里插入图片描述

Markov transition graph

在这里插入图片描述
图种有两种节点:state nodes和action nodes

3.2 Goals and Rewards

如果采取的动作不仅有直接奖励,还有延迟奖励,那么目标变为最大化该行动带来的奖励(reward)累积和的期望价值(expected value)。
理解:最大化收到的reward总和(in the long run)。

3.2.1 returns and episodes

return G t G_t Gt:step t t t之后的收到的rewards之和
G t = R t + 1 + R t + 2 + . . . + R T ( 3.7 ) G_t=R_{t+1}+R_{t+2}+...+R_T(3.7) Gt=Rt+1+Rt+2+...+RT3.7

episodes:
当agent-environment交互能自然地分解为子序列时,把子序列叫作episodes,有些文献中也叫trials。
terminal state: 每个episode每集的结束状态。所有episodes都可以被认为是以相同的终端状态结束,但是对不同的结果有不同的奖励。
episodic tasks: 包括多个episodes的tasks。 S \mathcal S S表示非终结状态的集合, S + \mathcal S^+ S+表示非终结状态加终结状态的集合。终止时间 T T T是随机变量,根据不同的episode 变化。

continuing tasks: 不能被分解成episodes的tasks,实际情况中很多都是连续任务,此时式(3.7)不再适用,因为 T = ∞ T=\infin T=

所以我们用了一个稍微复杂一点的return定义,引入了discounting,便于计算。

折现
选择 A t A_t At最大化expected discounted return:
在这里插入图片描述
γ ∈ [ 0 , 1 ] \gamma\in [0,1] γ[0,1]:折现率
γ &lt; 1 \gamma&lt;1 γ<1:如果 R k R_k Rk有限,式(3.8)是有限。
γ = 0 \gamma=0 γ=0:myopic,只考虑了直接奖励。
γ \gamma γ越接近1,说明越有远见,考虑future reward越多。

递推关系:
在这里插入图片描述

3.2.2 episodic tasks和continuing tasks的统一表示

对于episodic tasks来说,虽然又很多个episodes,但是我们通常只考虑其中单个的episode。
所以可以统一表示为:
在这里插入图片描述
其中,KaTeX parse error: Expected 'EOF', got '\infine' at position 3: T=\̲i̲n̲f̲i̲n̲e̲表示continuing tasks; γ = 1 \gamma=1 γ=1表示episodic tasks。两个条件不能同时满足。

3.3 Policy and Value function

policy: 从状态到选择每个可能动作的概率的映射。 例如:现在有policy π \pi π,则 π ( a ∣ s ) \pi(a|s) π(as)表示 S t = s S_t=s St=s A t = a A_t=a At=a的概率。

value function: 在policy π \pi π 和state s s s 下的expected return记作 v π ( s ) v_\pi(s) vπ(s)
在这里插入图片描述
在这里插入图片描述
v π v_\pi vπ是policy π \pi π 的state-value function; q π q_\pi qπ是policy π \pi π 的action-value function。

Bellman equation: 在policy π \pi π 和state s s s 下的expected return记作 v π ( s ) v_\pi(s) vπ(s)
在这里插入图片描述
式(3.14)是 v π v_\pi vπ的Bellman Equation,表示一个state价值与其下一阶段的state价值之间的关系。

3.4 Optimal Policies and Optimal Value Functions

optimal state-value function:
在这里插入图片描述
optimal action-value function:
在这里插入图片描述
对于state-action pair s , a s,a s,a,函数 q ∗ ( s , a ) q_*(s,a) q(s,a)表示在状态 s s s中执行动作 a a a并且此后遵循最优策略 π \pi π的expected return。因此, q ∗ q_* q可以用 v ∗ v_* v表示:
在这里插入图片描述
Bellman optimality equation:
含义:最优policy下的state value必须等于该state下的最佳action的expected return。
在这里插入图片描述
Bellman optimality equation for v ∗ v_* v:式(3.18)与式(3.19)
Bellman optimality equation for q ∗ q_* q:式(3.20)
在这里插入图片描述

3.5 Optimality and Approximation

因为很多原因,现实中可能无法得到最优解policy,此时就需要近似。强化学习的Online性质使得有可能以更多的方式接近最优策略,以便为频繁出现的state做出正确的决策,而不用考虑到出现频率低的state。这是将强化学习与其他近似解决MDP的方法区分开来的一个关键属性。

这篇关于Chapter 3:有限Markov决策过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/619235

相关文章

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MySQL中的InnoDB单表访问过程

《MySQL中的InnoDB单表访问过程》:本文主要介绍MySQL中的InnoDB单表访问过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、访问类型【1】const【2】ref【3】ref_or_null【4】range【5】index【6】

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

CSS3打造的现代交互式登录界面详细实现过程

《CSS3打造的现代交互式登录界面详细实现过程》本文介绍CSS3和jQuery在登录界面设计中的应用,涵盖动画、选择器、自定义字体及盒模型技术,提升界面美观与交互性,同时优化性能和可访问性,感兴趣的朋... 目录1. css3用户登录界面设计概述1.1 用户界面设计的重要性1.2 CSS3的新特性与优势1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte