GEE中Landsat、Sentinel、Modis主要数据集区别

2024-01-18 09:36

本文主要是介绍GEE中Landsat、Sentinel、Modis主要数据集区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、Landsat

1. Collection 1/2 的区别

  • Collection 2 是Landsat Level 1 数据的又一次重大再处理,显著提高了绝对地理定位精度
Collection1Collection2
时间跨度1972~2021底1972~至今
数据等级level 1level1:1972~2021底
level2:1982~至今

Landsat 集合 2 包括基于场景的全球 2 级表面反射率科学产品

Landsat 集合 2 包括基于场景的全球 2 级表面温度科学产品
在这里插入图片描述

2. Level 1/2的区别

Landsat Level 2 科学产品是从满足 <76 度太阳天顶角约束的 Collection 2 Level 1 输入生成的,并包括辅助数据。
相当于Level 2 是从Level 1 中筛选出的。

3. Tier 1 (T1)、Tier 2 (T2)、Real Time (RT)的区别

  • T1数据
    具有最高数据质量的Landsat影像被归入第1级,该数据适合进行时间序列分析。
    第一级包括精度和地形(L1TP)校正的数据,这些数据具有良好的辐射测量特性,并在不同的陆地卫星仪器之间进行了相互校准。T1数据之间的地形校正是一致的,并且均方根误差(RMSE)≦12米。
  • T2数据
    在处理过程中不符合一级标准的数据归并到到二级,即T2数据
    T2使用了与T1相同的辐射标准,但由于不太准确的轨道信息(针对较早的Landsat传感器)、明显的云层覆盖、地面控制不足或其他因素影像,不能达到T1数据的几何校正精度。
  • RT数据
    实时层数据,可在12小时内下载(通常为4-6小时)
    从RT数据到T1或T2数据的转换延迟时间在14到26天之间:
    RT数据集 --(几何校正模型校正和参数优化,并对数据进行重新处理)–> T1或T2数据集

综上,一般下Collection 2 的 Level 2 中的 Tier 1

二、Landsat 8 C2 L2 T1(SR)

Landsat8:USGS Landsat 8 Level 2, Collection 2, Tier 1(“LANDSAT/LC08/C02/T1_L2”)
辐射定标:0.0000275*band-0.2在这里插入图片描述Bitmask for QA_PIXEL:去云Bit3和4

Bit012345678-910-1112-1314-15
FillDilated CloudCirrus (high confidence)CloudCloud ShadowSnowClearWaterCloud ConfidenceCloud Shadow ConfidenceSnow/Ice ConfidenceCirrus Confidence

二、Sentinel-2

2.1 Sentinel-2 MSI(L1C和L2A)

2.1.1 L1C
  • ee.ImageCollection(“COPERNICUS/S2”)
  • 该产品经正射校正和亚像元级几何精校正,为天顶表观反射率数据(TOA)
  • 时间:2015-06-23~至今
2.1.2 L2A
  • ee.ImageCollection(“COPERNICUS/S2_SR”)
  • 该产品是利用欧空局官方提供的 Sen2cor工具,对 L1C 进行大气校正得到地表反射率数据产品(SR)。从2016年10月起提供全欧洲的数据,从2017年1月起提供全球的数据。
  • 时间:2017-03-28~~至今,实际上目前GEE上很多地方2019前的L2A数据几乎没有

2.2 Harmonized Sentinel-2 MSI(L1C、L2A)

  • ee.ImageCollection(“COPERNICUS/S2_HARMONIZED”)
  • 2022-01-25 之后,PROCESSING_BASELINE 为“04.00”或更高版本的 Sentinel-2 场景的 DN(值)范围移动了 1000。HARMONIZED 集合将新场景中的数据移动到与旧场景相同的范围内。

2.3 Sentinel-2: Cloud Probability(PRB去云)

  • ee.ImageCollection(“COPERNICUS/S2_CLOUD_PROBABILITY”)
  • S2 云概率是使用 sentinel2-cloud-detector 库(使用 LightGBM)创建的。 在应用梯度提升基础算法之前,使用双线性插值将所有波段上采样到 10m 分辨率,主要用来结合L1C或L2A进行去云操作的

三、Sentinel-1(SAR)

3.1 影像格式

S1A_EW_GRDM_1SDH_20180112T0825556_20180112T082700_ 020119_0224E3_ 7F9B

  • S1A是卫星Sentinel1-A的标识
  • EW为模式名称,有SM、IIW、EW和W。
  • GRDM为产品名称以及分辨率,产品有RAW、SLC、GRD或者OCN,分辨率类型为F(Full resolution)、H(High resolution)、M(Medium resolution)。
  • 1SDH,1为处理级别,可以为0、1、2。S为产品类型是Standard (S)或者是Annotation (A),DH是极化方式,如下:
    SH (single HH polarisation)
    SV (single VV polarisationn)
    DH (dual HH+HV polarisaation)
    DV (dual W+VH polarisattion)
  • 20180112T082556 20180112T082700是产品的开始和结束的事件,其中T是日期和时间的分隔符。
  • 020119是绝对轨道号,绝对轨道数考虑的是发射后第一个上升节点穿越后的轨道。相对轨道数是从1到个重复周期中包含的轨道数的计数。

四、Modis:MYD09GQ(A),MOD09GQ(A)

MYD09GQ,MYD09GA,MOD09GQ,MOD09GA

4.1 MYD和MOD

Modis拥有两颗卫星TERRA、AQUA,其过境时间分别为:

  • TERRA:10:30AM、10:30PM
  • AQUA:1:30AM、1:30PM

4.2 GQ和GA

  • GA:Surface Reflectance Daily Global 1km and 500m
  • GQ:Surface Reflectance Daily Global 250m
  • GQ可用GA的质量波段去云

这篇关于GEE中Landsat、Sentinel、Modis主要数据集区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/618639

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

Java中的String.valueOf()和toString()方法区别小结

《Java中的String.valueOf()和toString()方法区别小结》字符串操作是开发者日常编程任务中不可或缺的一部分,转换为字符串是一种常见需求,其中最常见的就是String.value... 目录String.valueOf()方法方法定义方法实现使用示例使用场景toString()方法方法

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

分辨率三兄弟LPI、DPI 和 PPI有什么区别? 搞清分辨率的那些事儿

《分辨率三兄弟LPI、DPI和PPI有什么区别?搞清分辨率的那些事儿》分辨率这个东西,真的是让人又爱又恨,为了搞清楚它,我可是翻阅了不少资料,最后发现“小7的背包”的解释最让我茅塞顿开,于是,我... 在谈到分辨率时,我们经常会遇到三个相似的缩写:PPI、DPI 和 LPI。虽然它们看起来差不多,但实际应用

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

GORM中Model和Table的区别及使用

《GORM中Model和Table的区别及使用》Model和Table是两种与数据库表交互的核心方法,但它们的用途和行为存在著差异,本文主要介绍了GORM中Model和Table的区别及使用,具有一... 目录1. Model 的作用与特点1.1 核心用途1.2 行为特点1.3 示例China编程代码2. Tab