2024华数杯国际赛B题高质量参考论文+所有小问数据代码+数据集整合

本文主要是介绍2024华数杯国际赛B题高质量参考论文+所有小问数据代码+数据集整合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                                      (完整版在文末)   ICMB题

该题目出题的难度与方向都与美赛 ICM 的题型高度相似,将本次竞赛当做美赛的 练手赛,个人认为是非常合适的一种选择。同时 28 号就可以出成绩,也可以在美赛前 实现查漏补缺,提前预祝大家比赛顺利,美赛都可以取得好成绩。下面,我们开始详细 的解读一下本次竞赛的 B 题。

B 题本次的难度远低于 A 题,这势必会导致 B 题的选题认识会比 A 题多很多,但 是比赛的最终成绩是获奖率。无论都是每个赛题选择人数多少,每个赛题获奖的人数都  50%,因此不存在选择人少的赛题好获奖这种情况,都是比例获奖。我可以保证跟着 本人的思路,获奖是没有任何问题的,至于能获得什么奖项,主要还是看对于每一问选 择的模型复杂度的高低以及队伍可视化的能力。基本每一问都会给两三种实现方式,上 中下三种实现方式,即使最简单的方式,也是可以保证获奖的。但是很难保证获得很好 的奖项。

数据收集

在正式开始题目之前必须明白,对于美赛这种 ICM 题目,很大程度的上的难点并不在 于题目本身而是,需要我们自行收集数据,由于大家之前没有自己找过数据,所以这一关会 难倒很多很多的人群。本团队会为大家收集一套完整的数据,供大家选择。至于选择这套数 据集中的何种数据,就因队伍而已,因此一千个队伍可能有一千种选择方式。所以,从一开 始的选择数据开始,大家就会各不相同。因此,无需担心查重率过高的问题。

本文目前,已经为大家收集了问题一和问题四的数据,如下所示。稍后也将为大家专门 收集关于光伏发电相关的数据,完成对于问题三四的数据收集。

1.2 Yeo-Johnson  转换

为了防止建立的模型过拟合以及提高模型的泛化能力, 需要对数据的分布情况进行 探索分析,力求保证数据集分布情况一致,首先将数据导入,运用 Python 判断每一列 数据的分布类型是否属于正态分布,本代码通过 SciPy  库中的 stats.skew() 函数来 判断数据是否需要进行 Yeo-Johnson  转换。Skewness(即偏度) 是衡量某一个样本数值 相对于平均数的偏离程度的统计量, 它可以用来描述数据的分布形态是否对称。偏度为 0  表示数据分布是对称的, 偏度大于 0  表示数据分布偏向右侧, 偏度小于 0  表示数据 分布偏向左侧。

问题三代码:

import gurobipy as gp
from gurobipy import GRBdef create_photovoltaic_model(P_values, G_values, C_b_values, C_o_values, A_values, B, total_available_land):# 创建模型model = gp.Model("MaxPhotovoltaicPower")# 决策变量N = {}for i in range(len(P_values)):N[i] = model.addVar(vtype=GRB.INTEGER, name=f"N_{i}")# 目标函数model.setObjective(gp.quicksum((P_values[i] * G_values[i] - C_b_values[i] - C_o_values[i]) * N[i] for i in range(len(P_values))), sense=GRB.MAXIMIZE)# 地理约束model.addConstr(gp.quicksum(A_values[i] * N[i] for i in range(len(P_values))) <= total_available_land, name="land_constraint")# 预算约束model.addConstr(gp.quicksum((C_b_values[i] + C_o_values[i]) * N[i] for i in range(len(P_values))) <= B, name="budget_constraint")return model, Ndef solve_photovoltaic_model(model):# 求解模型model.optimize()# 输出结果if model.status == GRB.OPTIMAL:return Trueelse:print("未找到最优解")return Falsedef get_optimal_solution(N):# 获取最优解optimal_N = {i: N[i].x for i in range(len(N))}optimal_Z = model.objValreturn optimal_N, optimal_Zdef main():# 示例数据P_values = [0.1, 0.15, 0.12]G_values = [100, 120, 90]C_b_values = [2000, 2500, 1800]C_o_values = [100, 120, 80]A_values = [5000, 6000, 4500]B = 50000total_available_land = 20000# 步骤1: 创建模型model, N = create_photovoltaic_model(P_values, G_values, C_b_values, C_o_values, A_values, B, total_available_land)# 步骤2: 求解模型if solve_photovoltaic_model(model):# 步骤3: 获取最优解optimal_N, optimal_Z = get_optimal_solution(N)print("最优建设数量 (N):", optimal_N)print("最优总发电量 (Z):", optimal_Z)if __name__ == "__main__":main()

2024华数杯B题五小问完整思路+四问数据代码+数据可视化图表

 

这篇关于2024华数杯国际赛B题高质量参考论文+所有小问数据代码+数据集整合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/617389

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则