2024华数杯国际数学建模A题思路模型详解

2024-01-17 11:52

本文主要是介绍2024华数杯国际数学建模A题思路模型详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2024华数杯国际数学建模A题思路论文:1.17上午第一时间持续更新,详细内容见文末名片
 

建立一个模型来描述放射性废水在海水中的扩散速率和方向,考虑到涉及的物理过程和环境因素的复杂性,我们通常会使用一个简化的扩散模型作为起点。在这种情况下,我们可以使用一个被广泛应用于环境工程和物理海洋学的模型:阿德韦克斯-扩散方程。这个方程考虑了物质由于流体运动(阿德韦克斯项)和由于浓度梯度引起的分子扩散(扩散项)的传输。

阿德韦克斯-扩散方程

阿德韦克斯-扩散方程的一维形式如下: ∂C∂t+u∂C∂x=D∂2C∂x2 \frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = D \frac{\partial^2 C}{\partial x^2} 其中: - C(x,t)C(x, t) 是时间 tt 和位置 xx 处的污染物浓度。 - uu 是流体(在这种情况下是海水)的速度。 - DD 是扩散系数。

模型参数

  1. 初始条件:在 t=0t = 0 时,1095吨放射性废水被排放到一个特定的位置。这可以被建模为一个浓度峰值。
  2. 流体速度 uu:这需要来自海洋流动数据。
  3. 扩散系数 DD:这依赖于海水的物理性质和放射性物质的特性。

实施和预测

使用这个方程,我们可以通过数值方法(如有限差分法)来模拟污染物随时间的扩散。我们将设置初始条件和边界条件,然后模拟从2023年8月27日到9月27日的扩散过程。最终的模拟结果将给出在不同时间和位置的浓度分布,从而可以预测污染范围和程

在上述模型中,我们假设了一定的流体速度和扩散系数,并将放射性废水的初始释放量设为1095吨,集中在一个特定点上。根据模型的结果,我们可以看到从排放点开始,放射性废水的浓度随着距离的增加而逐渐减少。

考虑大气环流和日本的地理位置对放射性废水扩散的影响,我们需要将大气-海洋相互作用和区域海洋流动模式纳入考虑。

  1. 大气环流对海洋表面流动的影响:风力可以显著影响海洋表层的流动方向和速率,特别是在近海区域。
  2. 日本周边的海洋流动特征:北太平洋流动模式,如黑潮(Kuroshio Current)等强劲的海洋流,对污染物的扩散路径和速率有显著影响。
  3. 季节性变化:季节变化会影响海洋和大气的温度、风向和海流强度,进而影响扩散过程。
  4. 垂直混合和深层流动:海洋深层水体的流动对于长期和深层扩散也很重要。

建模方法

  1. 耦合大气-海洋模型:这类模型能够同时模拟大气和海洋之间的能量、质量和动量交换。这对于理解风力如何影响海面流动特别重要。
  2. 区域海洋流动模型:这些模型专注于特定区域(如北太平洋),考虑局部海流、温度和盐度分布等因素。对于日本附近的海域,模型需要特别考虑黑潮等主要海流的影响。
  3. 垂直混合模型:这些模型考虑海水垂直方向的混合和流动,对于理解污染物如何从表面层扩散到深海非常重要。
  4. 数值模拟方法:这通常包括有限差分法、有限元法或谱方法,用于求解复杂的流体动力学方程。

预测扩散速率和方向

在这种建模框架下,预测放射性废水的扩散速率和方向将涉及以下步骤:

  • 初始条件设置:根据放射性废水的实际排放量和位置设置模型的初始条件。
  • 运行模拟:利用上述模型和数值方法来模拟从排放开始到特定时间点的扩散过程。
  • 结果分析:分析模拟结果,确定放射性废水在不同时间点的分布,从而预测其在日本周边海域的扩散速率和方向。

为了预测2023年9月27日日本附近海域的放射性废水污染范围和程度,我们可以使用前面提到的二维阿德韦克斯-扩散方程。我们使用一个简化的网格来演示基本的数值方法。


import numpy as np
import matplotlib.pyplot as plt# 参数设置
D_x = 0.1  # x方向的扩散系数
D_y = 0.1  # y方向的扩散系数
u = 0.05   # x方向的流速
v = 0.02   # y方向的流速Lx = 500   # x方向的长度(km)
Ly = 500   # y方向的长度(km)
dx = 5     # x方向的空间步长(km)
dy = 5     # y方向的空间步长(km)
dt = 0.1   # 时间步长(天)nx = int(Lx/dx) + 1  # x方向的网格点数
ny = int(Ly/dy) + 1  # y方向的网格点数
nt = int(30/dt) + 1  # 时间步数# 初始条件
C = np.zeros((nx, ny))
C[0, 0] = 1095  # 初始时刻在(0,0)处放置1095吨放射性废水# 二维阿德韦克斯-扩散方程的数值解
for t in range(1, nt):C[1:-1, 1:-1] = (C[1:-1, 1:-1] -u * dt / dx * (C[1:-1, 1:-1] - C[0:-2, 1:-1]) -v * dt / dy * (C[1:-1, 1:-1] - C[1:-1, 0:-2]) +D_x * dt / dx**2 * (C[2:, 1:-1]

上面的图表展示了30天后(即2023年9月27日)放射性废水在海水中的预测扩散情况。在这个模拟中,我们使用了假设的流速和扩散系数,以及简化的二维网格。

在这个模型中,放射性废水从初始排放点(图中左下角)开始扩散。扩散是由水流的流动(由参数 uv 控制)和分子扩散过程(由扩散系数 D_xD_y 控制)共同作用的结果。图中的颜色深浅表示不同区域的放射性废水浓度。

问题二:

2023年,日本政府已三次倾倒放射性废水。如果未来不再进行倾倒,请建立一个数学模型来研究三次倾倒后放射性废水的扩散路径。考虑海洋环流模式、水动力、海底地形、水深变化、潮汐影响和季节波动等因素。预测污染中国领海所需的时间。请对这一问题进行数学建模

为了研究日本三次倾倒放射性废水后的扩散路径,并预测污染到达中国领海所需的时间,我们选择数学模型来描述放射性物质在海水中的运动。最常用的是多维阿德韦克斯-扩散方程,它可以表达物质在流体中因流动和扩散造成的运输过程。

2. 模型方程

在三维空间中,阿德韦克斯-扩散方程可以写为: ∂C∂t+u∂C∂x+v∂C∂y+w∂C∂z=Dx∂2C∂x2+Dy∂2C∂y2+Dz∂2C∂z2 \frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} + w \frac{\partial C}{\partial z} = D_x \frac{\partial^2 C}{\partial x^2} + D_y \frac{\partial^2 C}{\partial y^2} + D_z \frac{\partial^2 C}{\partial z^2} 其中,C(x,y,z,t)C(x, y, z, t) 是放射性物质的浓度,u,v,wu, v, w 是流速分量,Dx,Dy,DzD_x, D_y, D_z 是相应方向的扩散系数。

为了更深入地理解放射性废水扩散模型,考虑一些额外的方程和数学概念。

1. 海洋流体动力学的基本方程

纳维-斯托克斯方程

用于描述流体运动的速度场,对于海水流动,该方程的一般形式是: ρ(∂u∂t+u⋅∇u)=−∇p+μ∇2u+ρg \rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{g} 其中,u\mathbf{u} 是流速向量,ρ\rho 是密度,pp 是压力,μ\mu 是动力粘度,g\mathbf{g} 是重力加速度。

连续性方程

描述质量守恒,对于不可压缩流体(如水),方程简化为: ∇⋅u=0 \nabla \cdot \mathbf{u} = 0

2. 扩散方程

考虑水体中放射性物质的扩散,使用扩散方程: ∂C∂t=D∇2C \frac{\partial C}{\partial t} = D \nabla^2 C 这里,CC 是放射性物质的浓度,DD 是扩散系数。

3. 潮汐和季节变化模型

潮汐模型

潮汐对海流的影响可以通过添加一个随时间变化的速度场来模拟,例如: utide(x,y,t)=Utide(x,y)cos⁡(ωt+ϕ) \mathbf{u}_{tide}(x, y, t) = \mathbf{U}_{tide}(x, y) \cos(\omega t + \phi) 其中,Utide(x,y)\mathbf{U}_{tide}(x, y) 表示潮汐引起的最大流速分布,ω\omega 是潮汐频率,ϕ\phi 是相位常数。

季节性变化

季节性变化对海洋环流和温度的影响可以通过引入时间依赖的参数来模拟,例如海水温度 T(x,y,z,t)T(x, y, z, t) 和盐度 S(x,y,z,t)S(x, y, z, t) 的变化。

4. 综合模型

将上述方程综合起来,我们得到一个更完整的模型,用以描述放射性废水的扩散: ∂C∂t+u⋅∇C=D∇2C+Ssource \frac{\partial C}{\partial t} + \mathbf{u} \cdot \nabla C = D \nabla^2 C + S_{source} 其中,SsourceS_{source} 是源项,代表放射性废水的排放。


 

为了分析放射性废水倾倒事件对中国未来渔业经济的长期影响,我们可以使用统计方法来处理调查数据,并结合经济模型来预测可能的经济影响。首先,我们来分析调查数据。 1. 调查数据分析 根据提供的调查数据,我们可以计算出在放射性废水事件前后改变饮食习惯的人数比例。我们将使用卡方检验来确定改变。 卡方检验的结果显示,卡方统计量为 277.63,P 值为 2.46×10−622.46×10−62。这个极低的 P 值表明,放射性废水事件前后人们对于购买和食用海鲜的态度有显著的变化。 2. 经济影响预测 接下来,我们可以使用这些数据来预测对渔业经济的长期影响。 假设和简化 需求下降:假设不再食用海鲜的人群将不再购买海产品。 价格弹性:需求量的减少将导致价格下降,进而可能影响供给。 市场调整:长期来看,市场可能会逐渐适应新的需求水平。

要对放射性废水倾倒对中国未来渔业经济的长期影响进行数学建模,可以使用条件概率和基本的概率理论。首先,我们可以定义一些符号:

  • P(E)P(E) 表示一个人在放射性废水倾倒前吃海鲜的概率。
  • P(F)P(F) 表示一个人在放射性废水倾倒后吃海鲜的概率。
  • P(E|F)P(E|F) 表示一个人在放射性废水倾倒后仍然吃海鲜的条件概率。
  • P(F|E)P(F|E) 表示一个人在放射性废水倾倒前吃海鲜的条件概率。

我们可以使用这些概率来估计未来渔业经济的长期影响。首先,我们可以计算放射性废水倾倒前后吃海鲜的人数:

  • 放射性废水倾倒前吃海鲜的人数:P(E)×10000P(E) \times 10000
  • 放射性废水倾倒后吃海鲜的人数:P(F)×10000P(F) \times 10000

然后,我们可以计算放射性废水倾倒前后不吃海鲜的人数:

  • 放射性废水倾倒前不吃海鲜的人数:10000−P(E)×1000010000 - P(E) \times 10000
  • 放射性废水倾倒后不吃海鲜的人数:10000−P(F)×1000010000 - P(F) \times 10000

接下来,我们可以考虑吃海鲜和不吃海鲜的人对渔业经济的影响。假设吃海鲜的人平均每年在渔业上花费X1X_1元,不吃海鲜的人平均每年在渔业上花费X2X_2元。

放射性废水倾倒前吃海鲜的人对渔业经济的年度贡献:

P(E)×10000×X1P(E) \times 10000 \times X_1

放射性废水倾倒前不吃海鲜的人对渔业经济的年度贡献:

(1−P(E))×10000×X2(1 - P(E)) \times 10000 \times X_2

放射性废水倾倒后吃海鲜的人对渔业经济的年度贡献:

P(F)×10000×X1P(F) \times 10000 \times X_1

放射性废水倾倒后不吃海鲜的人对渔业经济的年度贡献:

(1−P(F))×10000×X2(1 - P(F)) \times 10000 \times X_2

最后,我们可以比较放射性废水倾倒前后的渔业经济总贡献,以评估长期影响。

以下是LaTeX数学公式,用于表示上述计算:

吃海鲜的人数: 放射性废水倾倒前:放射性废水倾倒前:P(E)×10000 \text{放射性废水倾倒前:} P(E) \times 10000 放射性废水倾倒后:放射性废水倾倒后:P(F)×10000 \text{放射性废水倾倒后:} P(F) \times 10000

不吃海鲜的人数: 放射性废水倾倒前:放射性废水倾倒前:10000−P(E)×10000 \text{放射性废水倾倒前:} 10000 - P(E) \times 10000 放射性废水倾倒后:放射性废水倾倒后:10000−P(F)×10000 \text{放射性废水倾倒后:} 10000 - P(F) \times 10000

渔业经济年度贡献: 放射性废水倾倒前吃海鲜的人:放射性废水倾倒前吃海鲜的人:P(E)×10000×X1 \text{放射性废水倾倒前吃海鲜的人:} P(E) \times 10000 \times X_1 放射性废水倾倒前不吃海鲜的人:放射性废水倾倒前不吃海鲜的人:(1−P(E))×10000×X2 \text{放射性废水倾倒前不吃海鲜的人:} (1 - P(E)) \times 10000 \times X_2 放射性废水倾倒后吃海鲜的人:放射性废水倾倒后吃海鲜的人:P(F)×10000×X1 \text{放射性废水倾倒后吃海鲜的人:} P(F) \times 10000 \times X_1 放射性废水倾倒后不吃海鲜的人:放射性废水倾倒后不吃海鲜的人:(1−P(F))×10000×X2 \text{放射性废水倾倒后不吃海鲜的人:} (1 - P(F)) \times 10000 \times X_2

使用数学建模来分析日本排放放射性废水30年后的情况,需要建立一个更加详细和复杂的模型,该模型将考虑放射性物质的传输、稀释、衰变以及海洋环境中的生物地球化学过程。这样的模型通常需要使用流体动力学和放射性物质传输的偏微分方程来描述。

  1. 放射性物质传输方程: ∂C∂t=D∇2C−λC+Q \frac{\partial C}{\partial t} = D \nabla^2 C - \lambda C + Q 其中,C(x,t)C(\mathbf{x}, t) 是放射性物质的浓度,DD 是扩散系数,λ\lambda 是衰变常数,Q(x,t)Q(\mathbf{x}, t) 是源项,表示放射性废水的排放。
  2. 海洋水流模型: ∂u∂t+(u⋅∇)u=−1ρ∇p+ν∇2u+g \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{u} + \mathbf{g} 其中,u(x,t)\mathbf{u}(\mathbf{x}, t) 是流速向量,p(x,t)p(\mathbf{x}, t) 是压力,ν\nu 是动粘性系数,g\mathbf{g} 是重力加速度。
  3. 放射性衰变: λ=ln⁡2T1/2 \lambda = \frac{\ln 2}{T_{1/2}} 其中,T1/2T_{1/2} 是放射性物质的半衰期。
from fenics import *
from mshr import *# 创建一个矩形域,代表研究区域
domain = Rectangle(Point(0, 0), Point(100, 50))# 创建一个代表排放点的圆
radius = 1.0
circle = Circle(Point(20, 25), radius)# 从矩形域中减去圆,得到研究区域的几何形状
mesh = generate_mesh(domain - circle, 64)# 定义函数空间
V = FunctionSpace(mesh, 'P', 1)# 定义边界条件
def boundary(x, on_boundary):return on_boundarybc = DirichletBC(V, Constant(0), boundary)# 定义放射性衰变常数和扩散系数
lambda_ = Constant(0.1)
D = Constant(0.01)# 定义时间步长和总时间
dt = 0.1
T = 30  # 30 years# 定义放射性物质传输方程
C = Function(V)
C_n = interpolate(Constant(0), V)# 定义试验函数
v = TestFunction(V)# 定义时间循环
for t in range(int(T/dt)):# 更新源项Q = Expression('exp(-pow(x[0]-20, 2)/0.1 - pow(x[1]-25, 2)/0.1)', degree=2)# 求解方程F = (C - C_n)/dt*v*dx + D*dot(grad(C), grad(v))*dx - lambda_*C*v*dx - Q*v*dxsolve(F == 0, C, bc)# 更新前一个时间步的解C_n.assign(C)# 输出结果
file = File('radioactive_diffusion.pvd')
file << C

这篇关于2024华数杯国际数学建模A题思路模型详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/615944

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题

题库来源:安全生产模拟考试一点通公众号小程序 2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题是由安全生产模拟考试一点通提供,流动式起重机司机证模拟考试题库是根据流动式起重机司机最新版教材,流动式起重机司机大纲整理而成(含2024年流动式起重机司机证模拟考试题库及流动式起重机司机理论考试试题参考答案和部分工种参考解析),掌握本资料和学校方法,考试容易。流动式起重机司机考试技

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

uva 10014 Simple calculations(数学推导)

直接按照题意来推导最后的结果就行了。 开始的时候只做到了第一个推导,第二次没有继续下去。 代码: #include<stdio.h>int main(){int T, n, i;double a, aa, sum, temp, ans;scanf("%d", &T);while(T--){scanf("%d", &n);scanf("%lf", &first);scanf

uva 10025 The ? 1 ? 2 ? ... ? n = k problem(数学)

题意是    ?  1  ?  2  ?  ...  ?  n = k 式子中给k,? 处可以填 + 也可以填 - ,问最小满足条件的n。 e.g k = 12  - 1 + 2 + 3 + 4 + 5 + 6 - 7 = 12 with n = 7。 先给证明,令 S(n) = 1 + 2 + 3 + 4 + 5 + .... + n 暴搜n,搜出当 S(n) >=