C++反汇编揭秘1 – 一个简单C++程序反汇编解析 (Rev. 3)

2024-01-17 08:32

本文主要是介绍C++反汇编揭秘1 – 一个简单C++程序反汇编解析 (Rev. 3),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2006年11月14日 01:49:00

如果想要了解C++内部的实现原理,没有什么比观察C++代码对应的汇编代码来的更直接了。本系列主要从汇编角度研究C++代码和汇编的对应关系,揭示C++内部的机制和原理。在第一篇文章中我将从一个简单的C++程序着手快速解释一下C++反汇编代码的基本的结构和内容,相当于一个简单的Preview。而在后续的文章中,我将根据不同的Topic,详细解释C++代码对应的反汇编代码。

一个简单的C++程序示例如下:

class my_class

{

public :

my_class()

{

m_member = 1;

}

void method(int n)

{

m_member = n;

}

~my_class()

{

m_member = 0;

}

private :

int m_member;

};

int _tmain(int argc, _TCHAR* argv[])

{

my_class a_class;

a_class.method(10);

return 0;

}

可以直接Debug的时候看到Assembly代码,不过这样获得的代码注释比较少。比较理想的方法是利用VC编译器的一个选项/FAs来生成对应的汇编代码。/FAs还会在汇编代码中加入注释注明和C++代码的对应关系,十分有助于分析。在VS2005中可以这样打开/FAs

Build代码,可以在输出目录下发现对应的.ASM文件。本文将逐句分析汇编代码和C++的对应关系。

首先是WinMain

_TEXT SEGMENT

_wmain PROC

push ebp ; 保存旧的ebp

mov ebp, esp ; ebp保存当前栈的位置

push -1 ; 建立SEH(Structured Exception Handler)

; -1表示表头,没有Prev

push __ehhandler$_wmain ; SEH异常处理程序的地址

mov eax, DWORD PTR fs:0 ; fs:0指向TEB的内容,头4个字节是当前SEH链的地址

push eax ; 保存起来

sub esp, d8H ; 分配d8H字节的空间

push ebx

push esi

push edi

lea edi, DWORD PTR [ebp-e4H] ; 确定局部变量的起始地址。e4H = d8H + 4 * 3,跳过之前建立SEH链所用的3个Push指令所占用的栈的空间,以及sub esp, d8h为局部变量分配的d8H字节空间

mov ecx, 36H ; 36H*4H=d8H,也就是用36HccccccccH填满刚才分配的d8H字节空间

mov eax, ccccccccH

rep stosd

mov eax, DWORD PTR ___security_cookie

xor eax, ebp

push eax ; ebp ^ __security_cookie压栈保存

lea eax, DWORD PTR [ebp-0cH] ; ebp-0cH是之前main的起始代码中在堆栈中建立的SEH结构的首地址

mov DWORD PTR fs:0, eax ; 设置到TEB中作为当前ActiveSEH链表末尾

到此为止栈的内容是这样的:

低地址

Security cookie after XOR

Edi

Esi

Ebx

Local stack: d8H

Old fs:0

__ehhandler$_wmain

ffffffffH

Old ebp

高地址

main接着后面调用my_class的构造函数

lea ecx, DWORD PTR [ebp-14H]

call ??0my_class@@QAE@XZ ; 调用my_class::my_class, ??my_class@@QAE@XZ是经过Name Mangling后的名字

mov DWORD PTR [ebp-4], 0 ; 进入__try块,在Main中有一个隐式的__try/__except

接着调用my_class::method

push 10 ; 参数入栈

lea ecx, DWORD PTR [ebp-14H] ; 遵循thiscall调用协定,ecx存放的是this指针

call ?method@my_class@@QAEXH@Z ; 调用子程序my_class:method(10)

之后是析构:

mov DWORD PTR [ebp-e0H], 0 ; 用来放置返回值

mov DWORD PTR [ebp-4], -1 ; 标记TRY的正常结束

lea ecx, DWORD PTR [ebp-14H] ; a_class的地址作为this存入ECX

call ??1my_class@@QAE@XZ ; my_class::~my_class

mov eax, DWORD PTR [ebp-e0H] ; 返回值按照约定放入eax

Main函数退出代码如下:

push edx

mov ecx, ebp

push eax

lea edx, DWORD PTR $LN7@wmain

call @_RTC_CheckStackVars@8 ; 检查栈

pop eax

pop edx

mov ecx, DWORD PTR [ebp-0cH] ; 取出之前保存的旧的fs:0,并恢复

mov DWORD PTR fs:0, ecx

pop ecx

pop edi

pop esi

pop ebx

add esp, e4H ; 退掉分配的d8H + 建立SEH链所需的0cH字节

cmp ebp, esp

call __RTC_CheckEsp ; 检查esp值,这个时候esp应该和ebp匹配,否则说明出现了栈不平衡的情况,这种情况下调用子程序报错

mov esp, ebp ; 恢复ebpesp

pop ebp ; 恢复原来的ebp

ret 0

_wmain ENDP

专门用于SEH的子程序。__unwindfunclet$_wmain$0当异常发生的时候被调,负责进行栈展开,主要是调用析构函数。__ehhandler$_wmain则是在exception被抛出的时候调用。

Text$x SEGMENT

__unwindfunclet$_wmain$0: ; SEH发生的时候会调用该函数,析购a_class

lea ecx, DWORD PTR [ebp-14H] ; ecx = [ebp – 14H],也就是a_class的地址

jmp ??1my_class@@QAE@XZ ; 调用my_class::~my_class

__ehhandler$_wmain:

mov edx, DWORD PTR [esp+8] ; esp = 当前的fs:0, [esp + 8] = 之前的SEH结构,也就是main中建立的

lea eax, DWORD PTR [edx+0cH] ; edx + 0Ch = 当前的ebp,也就是mainebp,此时不能直接使用ebp因为可能会从任意函数调过来,此时ebp是该函数的ebp,而不是mainebp

mov ecx, DWORD PTR [edx-e0H] ; 之前存下去的__security_cookie ^ ebp

xor ecx, eax ; 再次和ebp相异或

call @__security_check_cookie@4 ; 此时ecx应该等于__security_cookie,否则说明栈的内容被恶意改动(或者编程错误)

mov eax, OFFSET __ehfuncinfo$_wmain

jmp ___CxxFrameHandler3

text$x ENDS

My_class::my_class构造函数如下。构造函数本质上就是一个全局函数,名字是经过打乱的(Name Mangling),这样可以和同一Class和其他Class的同名方法区别开来。不同编译器有不同规则,因此不必过于深究。

_TEXT SEGMENT

??0my_class@@QAE@XZ PROC

push ebp ; 保存旧的ebp

mov ebp, esp ; ebp保存当前栈的位置

sub esp, ccH ; 给栈分配ccH个字节

push ebx ; 保存常用寄存器

push esi

push edi

push ecx

lea edi, DWORD PTR [ebp-ccH] ; 从分配的位置开始

mov ecx, 33H ; 33HccccccccH

mov eax, ccccccccH ; 也就是33H*4H=ccH,正好是分配的大小

rep stosd ; 从而把整个栈上当前分配的空间用ccH填满

pop ecx

mov DWORD PTR [ebp-8], ecx ; 按照约定,一般用ECX保存this指针

; this存入到ebp-8,并不是很必要,因为这是Debug版本

; 10 : {

; 11 : m_member = 1;

mov eax, DWORD PTR [ebp-8] ; eax中存放this

mov DWORD PTR [eax], 1 ; this的头四个bytem_member的内容

; 12 : }

mov eax, DWORD PTR [ebp-8] ; 多余的一句话,可以优化掉

pop edi

pop esi

pop ebx

mov esp, ebp ; 恢复esp,因此就算是中间栈运算出错,最后也不会导致灾难性的结果,只要ebp还是正确的

pop ebp

ret 0

??0my_class@@QAE@XZ ENDP

My_class::method的实现如下:

_TEXT SEGMENT

?method@my_class@@QAEXH@Z PROC ; my_class::method

; 15 : {

push ebp

mov ebp, esp

sub esp, ccH

push ebx

push esi

push edi

push ecx

lea edi, DWORD PTR [ebp-ccH]

mov ecx, 33H

mov eax, ccccccccH

rep stosd

pop ecx

mov DWORD PTR [ebp-8], ecx

; 16 : m_member = n;

mov eax, DWORD PTR [ebp-8] ; eax中存放this

mov ecx, DWORD PTR [ebp+8] ; ebp -< ebp

; ebp + 4 -< IP

; ebp + 8 -< n

; n存入ecx

mov DWORD PTR [eax], ecx ; this头四个字节是m_member, 因此这句话就是m_member = n

; 17 : }

pop edi

pop esi

pop ebx

mov esp, ebp

pop ebp

ret 4 ; 等价于

; ret 恢复EIP,返回调用地址

; add esp, 4 -< n从栈上Pop

?method@my_class@@QAEXH@Z ENDP

最后的析构函数,和前面的代码并无区别。

_TEXT SEGMENT

??1my_class@@QAE@XZ PROC ; my_class::~my_class

; 20 : {

push ebp

mov ebp, esp

sub esp, 204

push ebx

push esi

push edi

push ecx

lea edi, DWORD PTR [ebp-204]

mov ecx, 33H

mov eax, ccccccccH

rep stosd

pop ecx

mov DWORD PTR _this$[ebp], ecx

; 21 : m_member = 0;

mov eax, DWORD PTR [ebp-8]

mov DWORD PTR [eax], 0

; 22 : }

pop edi

pop esi

pop ebx

mov esp, ebp

pop ebp

ret 0

??1my_class@@QAE@XZ ENDP ; my_class::~my_class

_TEXT ENDS

作者: ATField
Blog:
http://blog.csdn.net/atfield
转载请注明出处



Trackback: http://tb.blog.csdn.net/TrackBack.aspx?PostId=1382694


这篇关于C++反汇编揭秘1 – 一个简单C++程序反汇编解析 (Rev. 3)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/615457

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

C语言中自动与强制转换全解析

《C语言中自动与强制转换全解析》在编写C程序时,类型转换是确保数据正确性和一致性的关键环节,无论是隐式转换还是显式转换,都各有特点和应用场景,本文将详细探讨C语言中的类型转换机制,帮助您更好地理解并在... 目录类型转换的重要性自动类型转换(隐式转换)强制类型转换(显式转换)常见错误与注意事项总结与建议类型