Python爬虫---scrapy框架---当当网管道封装

2024-01-17 03:28

本文主要是介绍Python爬虫---scrapy框架---当当网管道封装,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

项目结构: 

dang.py文件:自己创建,实现爬虫核心功能的文件

import scrapy
from scrapy_dangdang_20240113.items import ScrapyDangdang20240113Itemclass DangSpider(scrapy.Spider):name = "dang"  # 名字# 如果是多页下载的话, 那么必须要调整的是allowed_domains的范围 一般情况下只写城名# allowed_domains = ["https://category.dangdang.com/cp01.01.00.00.00.00.html"]allowed_domains = ["category.dangdang.com"]start_urls = ["https://category.dangdang.com/cp01.01.00.00.00.00.html"]# 第1页:"https://category.dangdang.com/cp01.01.00.00.00.00.html"# 第2页: "https://category.dangdang.com/pg2-cp01.01.00.00.00.00.html"# 第3页: "https://category.dangdang.com/pg3-cp01.01.00.00.00.00.html"base_url = "https://category.dangdang.com/pg"page = 1def parse(self, response):print("========================================================================")# pipelines: 下载数据# items: 定义数据结构# xpath语法# src = //ul[@id='component_59']/li/a/img/@src# 除了第一张,其他做了懒加载 所以不能使用src,要使用这个data-original# src = //ul[@id='component_59']/li/a/img/@data-original# alt = //ul[@id='component_59']/li/a/img/@alt# price = //ul[@id='component_59']/li/p[@class='price']/span[1]/text()# 所有的seletor的对象都可以再次调用xpath语法li_list = response.xpath("//ul[@id='component_59']/li")for li in li_list:src = li.xpath(".//img/@data-original").extract_first()if src:src = srcelse:src = li.xpath(".//img/@src").extract_first()name = li.xpath(".//img/@alt").extract_first()price = li.xpath(".//p[@class='price']/span[1]/text()").extract_first()print(src, name, price)# 将爬取的数据放在对象里book = ScrapyDangdang20240113Item(src=src, name=name, price=price)# 获取一个book将book交给pipelines,将对象放在管道里yield book# 每一页的爬取业务的逻辑全都是一样的,所以我们只需要将执行的那个页的请求再次调用if self.page < 100:self.page = self.page + 1url = self.base_url + str(self.page) + "-cp01.01.00.00.00.00.html"# 调用parse万法# scrapy.Request就是scrpay的get请求 url就是请求地址# callback是你要执行的那个函数注意不需要加()yield scrapy.Request(url=url, callback=self.parse)

 items文件:定义数据结构的地方

import scrapyclass ScrapyDangdang20240113Item(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()# 通俗的说就是你要下载的数据都有什么src = scrapy.Field()name = scrapy.Field()price = scrapy.Field()

settings文件:配置文件,例如开启管道

# 开启管道
ITEM_PIPELINES = {# 管道可以有很多个,那么管道是有优先级的,优先级的范围是1到1000,值越小优先级越高"scrapy_dangdang_20240113.pipelines.ScrapyDangdang20240113Pipeline": 300,"scrapy_dangdang_20240113.pipelines.DangdangDownloadPipeline": 301,
}

 pipelines.py文件:管道文件,里面只有一个类,用于处理下载数据的,值越小优先级越高

# 下载数据# 如果想使用管道的话 那么就必须在settings中开启管道
class ScrapyDangdang20240113Pipeline:# item就是yield后面的book对象# 方式一:# 以下这种模式不推荐,因为每传递过来一个对象,那么就打开一次文件,对文件的作过于频繁# def process_item(self, item, spider):# (1)write万法必须要写一个字符串,而不能是其他的对象,使用str()强转# (2)w模式 会每一个对象都打开一次文件 覆盖之前的内容# with open("book.json","a",encoding="utf-8")as fp:#     fp.write(str(item))# return item# 方式二:# 在爬虫文件开始之前就执行的方法def open_spider(self, spider):print("++++++++++++++++++++++++++++++++++++++++++++++++++")self.fp = open("book.json", "w", encoding="utf-8")def process_item(self, item, spider):self.fp.write(str(item))return item# 在爬虫文件开始之后就执行的方法def close_spider(self, spider):print("----------------------------------------------------")self.fp.close()# 多条管道同时开启
# (1)定义管道类
# (2)在settings中开启管道
import urllib.request
class DangdangDownloadPipeline:def process_item(self, item, spider):# 下载图片url = "https:" + item.get("src")filename = "./books/" + item.get("name")[0:6] + ".jpg"urllib.request.urlretrieve(url=url, filename=filename)return item

这篇关于Python爬虫---scrapy框架---当当网管道封装的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/614753

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个?

跨平台系列 cross-plateform 跨平台应用程序-01-概览 cross-plateform 跨平台应用程序-02-有哪些主流技术栈? cross-plateform 跨平台应用程序-03-如果只选择一个框架,应该选择哪一个? cross-plateform 跨平台应用程序-04-React Native 介绍 cross-plateform 跨平台应用程序-05-Flutte

Spring框架5 - 容器的扩展功能 (ApplicationContext)

private static ApplicationContext applicationContext;static {applicationContext = new ClassPathXmlApplicationContext("bean.xml");} BeanFactory的功能扩展类ApplicationContext进行深度的分析。ApplicationConext与 BeanF

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

数据治理框架-ISO数据治理标准

引言 "数据治理"并不是一个新的概念,国内外有很多组织专注于数据治理理论和实践的研究。目前国际上,主要的数据治理框架有ISO数据治理标准、GDI数据治理框架、DAMA数据治理管理框架等。 ISO数据治理标准 改标准阐述了数据治理的标准、基本原则和数据治理模型,是一套完整的数据治理方法论。 ISO/IEC 38505标准的数据治理方法论的核心内容如下: 数据治理的目标:促进组织高效、合理地

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',