软件测试|Pydantic处理时间类型数据

2024-01-16 20:52

本文主要是介绍软件测试|Pydantic处理时间类型数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

我们之前介绍过使用pydantic验证数据,比如校验数据的格式等,但是在我们的日常工作中,还有一种数据是需要我们验证的,比如时间数据,时间数据不同于字符串,列表等数据,与他们的验证不一样,本文就来为大家介绍一下pydantic如何验证时间数据。

datetime时间类型处理

首先,datetime有以下不同的数据:

  • datetime, 现有datetime对象
  • int或float,假定为 Unix 时间,即自 1970 年 1 月 1 日以来的秒数(if >= -2e10 or <= 2e10))或毫秒 (if < -2e10or > 2e10)
  • str, 则类似:YYYY-MM-DD[T]HH:MM[:SS[.ffffff]][Z or [±]HH[:]MM]]]int或float作为字符串(假定为 Unix 时间)

处理datetime数据,代码如下:

from datetime import datetime
from pydantic import BaseModel, validatorclass Book(BaseModel):id: intname: strcreate_time: datetime = None@validator('create_time', pre=True, always=True)def set_create_now(cls, v):return v or datetime.now()#  1.传datetime 对象
book1 = Book(id=1, name='muller', create_time=datetime.now())
print(book1.json())# 2.传字符串
book2 = Book(id=2, name='theshy', create_time="2023-10-24T12:00:10.707257")
print(book2.json())# 3.Unix 时间戳
book2 = Book(id=3, name='langx', create_time=1645506606260)
print(book2.json())-----------
输出结果如下:
{"id": 1, "name": "muller", "create_time": "2023-10-25T14:36:27.550312"}
{"id": 2, "name": "theshy", "create_time": "2023-10-24T12:00:10.707257"}
{"id": 3, "name": "langx", "create_time": "2022-02-22T05:10:06.260000+00:00"}

date 日期类型

date日期数据类型可能是以下类型:

  • date, 现有date对象
  • int或float,见datetime Unix 时间
  • str, 有效格式:YYYY-MM-DD int或float

处理date日期数据类型,代码如下:

from datetime import datetime, date
from pydantic import BaseModel, validatorclass Book(BaseModel):id: intname: strcreate_time: date = None@validator('create_time', pre=True, always=True)def set_create_now(cls, v):return v or date.today()#  1.传date 对象
book1 = Book(id=1, name='python', create_time=date.today())
print(book1.json())# 2.传字符串
book2 = Book(id=2, name='python', create_time="2023-10-01")
print(book2.json())# 3.Unix 时间戳
book2 = Book(id=3, name='python', create_time=1645506606260)
print(book2.json())-----------------
输出结果如下:
{"id": 1, "name": "python", "create_time": "2023-10-25"}
{"id": 2, "name": "python", "create_time": "2023-10-01"}
{"id": 3, "name": "python", "create_time": "2022-02-22"}

time时间点处理

time字段可以是:

  • time, 现有time对象
  • str, 以下格式有效:HH:MM[:SS[.ffffff]][Z or [±]HH[:]MM]]]

要对time进行处理,代码如下:

from datetime import datetime, date, time, timedelta
from pydantic import BaseModel, validatorclass Book(BaseModel):id: intname: strcreate_time: time#  1.传time 对象
book1 = Book(id=1, name='theshy', create_time=time(15, 26, 16))
print(book1.json())# 2.传字符串
book2 = Book(id=2, name='rookie', create_time="15:26:16")
print(book2.json())------------
输出结果如下:
{"id": 1, "name": "theshy", "create_time": "15:26:16"}
{"id": 2, "name": "rookie", "create_time": "15:26:16"}

timedelta时间差

timedelta对象表示的是两个时间点的时间差,两个datedatetime对象相减就可以返回一个timedelta对象。timedelta字段可以是:

  • timedelta, 现有timedelta对象
  • intfloat, 假定为秒
  • str, 以下格式有效:[-][DD ][HH:MM]SS[.ffffff] 和 [±]P[DD]DT[HH]H[MM]M[SS]S

要对时间差数据进行处理,代码如下:

from datetime import date, datetime, time, timedelta
from pydantic import BaseModelclass Model(BaseModel):d: date = Nonedt: datetime = Nonet: time = Nonetd: timedelta = Nonem = Model(d=1966280412345.6789,dt='2032-04-23T10:20:30.400+02:30',t=time(4, 8, 16),td='P3DT12H30M5S',
)print(m.dict())--------------
输出结果如下:
{'d': datetime.date(2032, 4, 22), 
'dt': datetime.datetime(2032, 4, 23, 10, 20, 30, 400000, tzinfo=datetime.timezone(datetime.timedelta(seconds=9000))), 
't': datetime.time(4, 8, 16), 
'td': datetime.timedelta(days=3, seconds=45005)}

总结

本文主要介绍了pydantic对于时间数据的处理,不只是datetime数据,还有日期,时间点,时间差等数据的验证处理,希望本文对大家有所帮助。

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!

这篇关于软件测试|Pydantic处理时间类型数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/613863

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本