存内计算技术打破常规算力局限性

2024-01-16 15:12

本文主要是介绍存内计算技术打破常规算力局限性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

关于存内计算

1、常规算力局限性

2、存内计算诞生记

3、存内计算核心

存内计算芯片研发历程及商业化

1、存内计算芯片研发历程

2、存内计算先驱出道

3、存内计算商业化落地

基于知存科技存内计算开发板ZT1的降噪验证

(一)任务目标以及具体步骤

1、主模块

2、子模块(烧录时候需要用到)

3、主模块设置

4、连接效果

(二)模拟及验证结果

1、啸叫环境模拟

2、啸叫抑制效果

体验与收获

结束语

参考文献


前言

众所周知,人工智能的高速发展颠覆了人们传统的生活和工作方式,AI已经逐渐“渗透”到各个领域,与AI相关的一切也都在发生重大改变。就拿人工智能比较核心的深度学习算法来讲,它让芯片领域也发生了巨大的技术变革,比如在人工智能发展的早期,基于AI的芯片是使用传统的冯·诺依曼计算架构的,但是随着芯片存储性能的劣势逐渐凸显,使得AI芯片研发工程师们不得不采取其他新技术来规避这种缺点,这就使得存内计算应运而生。那么本文就来简单分享一下关于存内计算技术是如何打破常规算力局限性的,以及对应的存内计算芯片产品的体验分享。

关于存内计算

1、常规算力局限性

首先来了解一下冯·诺依曼计算架构,冯·诺依曼结构也称普林斯顿结构,它是一种将程序指令存储器和数据存储器合并在一起的存储器结构,是由数学家冯·诺依曼提出的计算机制造的三个基本原则:采用二进制逻辑、程序存储执行以及计算机由五个部分组成(运算器、控制器、存储器、输入设备、输出设备),这个理论体系被称为冯·诺依曼体系结构。

如果内存的传输速度跟不上CPU的性能,就会导致计算能力受到限制,也就是出现“内存墙”,比如CPU处理运算一道指令的耗时假若为1ns,但内存读取传输该指令的耗时可能就已达到10ns,这就严重影响了CPU的运行处理速度。另外,如果读写一次内存的数据能量比计算一次数据的能量多消耗几百倍,也就是说的存在的“功耗墙”。

随着近几年云计算和人工智能(AI)应用的发展,面对计算中心的数据洪流,数据搬运慢、搬运能耗大等问题成为了计算的关键瓶颈。冯·诺依曼架构由于指令和数据共享同一内存,使得处理器不能同时取指令和数据,会导致在程序执行过程中可能发生数据和指令冲突,造成处理器的等待周期,这会降低系统的执行效率和速度。这里不得不提一下存算一体,存算一体(Computing in Memory)其实就是在存储器中嵌入计算能力,以新的运算架构进行二维和三维矩阵乘法/加法运算,也为后面的新的存内计算诞生埋下了伏笔。

2、存内计算诞生记

在2018年的时候,Google针对自己产品的耗能情况做了一项研究调查,发现整个系统耗能的62.7%浪费在CPU和内存的读写传输上,也就是传统冯·诺依曼架构导致的高延迟和高耗能的问题成为急需解决的问题,而其中的短板存储器成为了制约数据处理速度提高的主要瓶颈。

但是经过一系列的技术攻关,诞生的存内计算可以有效消除存储单元与计算单元之间的数据传输耗能过高、速度有限的情况,从而有效解决冯·诺依曼架构的瓶颈。而且存内计算存在多种基于不同存储介质的技术路径,比如SRAM、Flash及其它新型存储器。

3、存内计算核心

存内计算(Computing in Memory)是指将计算单元直接嵌入到存储器中,顾名思义就是把计算单元嵌入到内存当中,通常计算机运行的冯·诺依曼体系包括存储单元和计算单元两部分。在本质上消除不必要的数据搬移的延迟和功耗,从而消除了传统的冯·诺依曼架构的瓶颈,打破存储墙。据悉,存内计算特别适用于需要大数据处理的领域,比如云计算、人工智能等领域,最重要的一点是存内计算是基于存储介质的计算架构,而且存内计算是一种新型存储架构且轻松打破传统存储架构的瓶颈。

根据存储介质的不同,存内计算芯片可分为基于传统存储器和基于新型非易失性存储器两种。传统存储器包括SRAM, DRAM和Flash等;新型非易失性存储器包括ReRAM、PCM、FeFET、MRAM等。其中,距离产业化较近的是基于NOR Flash和基于SRAM的存内计算芯片。虽然基于各类存储介质的存算一体芯片研究百花齐放,但是各自在大规模产业化之前都仍然面临一些问题和挑战。存算一体技术在产业界的进展同样十分迅速,国内外多家企业在积极研发,例如我国台湾的台积电,韩国三星、日本东芝、美国Mythic,国内的知存科技等。

但是当前最接近产业化的主要是台积电、Mythic和知存科技。从2019年至今,台积电得益于其强大的工艺能力,已基于SRAM与ReRAM发表了一系列存算一体芯片研究成果,具备量产代工能力。Mythic已于2021年推出基于NOR Flash的存内计算量产芯片M1076,可支持80 MB神经网络权重,单个芯片算力达到25 TOPS,主要面向边缘侧智能场景。国内的知存科技于2021年发布基于NOR Flash的存内计算芯片WTM2101,是率先量产商用的全球首颗存内计算SoC芯片,已经应用于百万级智能终端设备。

存内计算芯片研发历程及商业化

1、存内计算芯片研发历程

其实早在2012年,深度学习算法在图像分类竞赛中展现出的显著性能提升,就引发了新一轮的AI热潮。而在2015年,深度学习算法对芯片的快速增长需求引发了AI芯片的创业热潮。但是拥抱AI芯片的设计者们很快就发现,使用经典的冯·诺依曼计算架构AI芯片即使在运算单元算力大幅提升,但是在存储器性能提升速度较慢的情况下,两者的性能差距越来越明显,这使得“内存墙”的问题越来越显著。

在传统计算机的设定里,存储模块是为计算服务的,因此设计上会考虑存储与计算的分离与优先级。但如今存储和计算不得不整体考虑,以最佳的配合方式为数据采集、传输和处理服务。存储与计算的再分配过程就会面临各种问题,主要体现为存储墙、带宽墙和功耗墙问题。存算一体的优势是打破存储墙,消除不必要的数据搬移延迟和功耗,并使用存储单元提升算力,成百上千倍的提高计算效率,降低成本。

其实,利用存储器做计算在很早以前就有人研究,上世纪90年代就有学者发表过相关论文,但没有人真正实现产业落地,究其原因,一方面是设计挑战比较大,更为关键的是没有杀手级应用。但是随着深度学习的大规模爆发,存内计算技术才开始产业化落地,存内计算的产业化落地历程,与知存科技创始人的求学创业经历关系密切。

2、存内计算先驱出道

2011年,郭昕婕本科毕业于北大信息科学技术学院微电子专业,本科毕业之后郭昕婕开始了美国加州大学圣塔芭芭拉分校(UCSB)的博士学业,她的导师Dmitri B.Strukov教授是存内计算领域的学术大牛,2008年在惠普完成了忆阻器的首次制备,2010年加入了美国加州大学圣塔芭芭拉分校。郭昕婕也成为了Dmitri B.Strukov教授的第一批博士生,开始了基于NOR FLASH存内计算芯片的研究。

2013年,随着深度学习的研究热潮席卷学术界,在导师的支持下,郭昕婕开始尝试基于NOR FLASH存内计算的芯片研发。耗时4年,历经6次流片,郭昕婕终于在2016年研发出全球第一个3层神经网络的浮栅存内计算深度学习芯片(PRIME架构),首次验证了基于浮栅晶体管的存内计算在深度学习应用中的效用。相较于传统冯诺伊曼架构的传统方案,PRIME可以实现功耗降低约20倍、速度提升约50倍,引起产业界广泛关注。随着人工智能等大数据应用的兴起,存算一体技术得到国内外学术界与产业界的广泛研究与应用。

在2017年微处理器顶级年会(Micro 2017)上,包括英伟达、英特尔、微软、三星、加州大学圣塔芭芭拉分校等都推出了他们的存算一体系统原型。也就是在2017年,郭昕婕就进一步攻下7层神经网络的浮栅存内计算深度学习芯片。

3、存内计算商业化落地

AIoT是存内计算技术率先落地的重点领域,因其强调人机交互,同时先进的存算存储技术以及制造业能够为其提供最短路径支持。知存科技是目前唯一实现市场规模化应用的存内计算企业,2021年发布的WTM2101芯片主要布局在语言唤醒语音活动检测(Voice Activity Detection,VAD)、语音识别、通话降噪、声纹识别等,已落地应用在嵌入式领域中,包括智能手表健康监测以及较低功耗(毫安级)的智能眼镜语音识别。

据悉,WTM2101成功开拓市场以后,知存科技重点布局的将是AI视觉领域。据官方资料,知存科技将发布首个存内计算AI视觉芯片,支持至少24Tops AI算力,支持极低功耗的图像处理和空间计算。此外,九天睿芯产品主要用于语音唤醒,或者时间序列传感器信号计算处理;定位推广可穿戴及超低功耗IOT设备;后摩智能相关芯片应用于无人车边缘端以及云端推理和培训等场景,2022年5月,后摩智能自主研发的存算一体技术大算力AI芯片跑通智能驾驶算法模型。可以预见,存内计算技术的商业化应用正在呈现百花齐放的局面,也期待这些企业能够推动我国AI算力的突破性发展,实现更多AI应用落地。

全球首个存内计算社区立,涵盖最丰富的存内计算内容,以存内计算技术为核心,绝无仅有存内技术开源内容,囊括云/边/端侧商业化应用解析以及新技术趋势洞察等, 邀请业内大咖定期举办线下存内workshop,实战演练体验前沿架构;从理论到实践,做为佳窗口存内计算让你触手可及。

传送门:https://bbs.csdn.net/forums/computinginmemory?category=10003;

社区最新活动存内计算大使招募中,享受社区资源倾斜,打造属于你的个人品牌,点击下方一键加入

https://bbs.csdn.net/topics/617915760

基于知存科技存内计算开发板ZT1的降噪验证

接下来是本文的重头戏,也就是直接对基于存内计算ZT1开发板的降噪验证。在开始实际操作之前,需要进行一些准备工作,本文是基于已经有ZT1开发板来讲的,主要是对开发板进行连线和配置操作。首先来看一下开发板全貌,主要分为:主模块、子模块、耳机三部分组成,具体如下所示。先来看一下知存ZT1开发板,另外需要注意,ZT1开发板目前只支持Windows系统的电脑连接关联。

(一)任务目标以及具体步骤

1、主模块

主模块的概览,如下所示。

2、子模块(烧录时候需要用到)

这里的子模块,分为正反两面,根据模块的提示字符,与主模块进行关联即可。

3、主模块设置

这里的设置主要是把开关放在对应的USB这个位置,具体如下图所示:

4、连接效果

根据上面的逐一介绍,再加上官方的指导视频,具体的板子关联效果如下所示。

(二)模拟及验证结果

在执行完上面的板子、耳机连接,以及通过数据线连接板子和电脑的之后,就是插电验证啸叫抑制的效果,在耳机连接之后,会出现高分贝杂音啸叫,接着再打开板子,杂音马上消失,这就是ZT1开发板成功啸叫抑制的结果。由于不能上传演示视频,这里只做图片说明的结果展示。

1、啸叫环境模拟

未使用ZT1开发板的,啸叫环境下,噪音环境声音:75db,啸叫:85db,具体演示局部如下所示。

打开使用ZT1开发板,直接精准啸叫抑制,时间延迟<1ms,噪音环境声音:75db,啸叫:0db,非常快,非常专业,具体演示掠影如下所示。

2、啸叫抑制效果

最后引用一下知存科技的最后啸叫抑制的对比效果,具体如下所示。

啸叫抑制前:

啸叫抑制后:

功耗验证:

功耗笔测试的数据图
功耗笔测试的数据图

体验与收获

通过上面关于基于存内计算ZT1开发版的降噪验证体验,颠覆了自己对AI领域的常规认知,也是自己距离AI最近的一次,尤其通过使用知存的ZT1开发板进行啸叫抑制的测试体验,彻底让我知道存内计算的先进性和魅力,然后通过这次近距离的操作体验,让自己真真切切体验了一把AI就在我“旁边”的无距离接触。

对我自己来说,虽然AI已经火了一年多了,但是我实际接触AI的情景却不多,除了之前对一些国内外AI大模型的使用体验,还有对国内的某一个大模型进行开发使用之外,就很少接触真正的AI相关的核心内容。通过这次对知存的ZT1开发板使用体验,让我一下子就步入了AI入门水平,而且还是直接接触了AI的核心中的核心内容:存内计算,以及AI芯片,个人觉得于我来说是个非常有价值的事情,也让自己涉猎了新的核心内容,受益匪浅。

虽然这次只做了简单的使用体验,没有深度的参与开发板的烧录等实践,但是这已经非常不错了,成功的操作体验也让我对AI领域有了更浓厚的兴趣,也让我很有成就感,更重要的是这次使用体验让我感受到了AI对硬件领域的技术影响巨大,倒逼传统技术模式的变革,尤其是AI芯片等领域的快速发展。

经过本次的使用体验,也让我加深了一些人工智能知识的掌握,以及对知存的ZT1开发板的深度了解,为我后面使用知存的ZT1开发板烧录体验以及更多存内计算开发奠定基础。虽然我自己现阶段关于AI的学习和掌握还停留在入门水平,但是在这次体验实践之后,未来可能在AI硬件和软件领域都会有更深入的使用和学习。

结束语

通过上文的详细介绍和体验分享,想必读者对传统的冯·诺依曼计算架构的局限性以及存内计算技术的明显优势都有了深入的体会吧。存内计算的独有优势也是给AI芯片计算带来了不可估量的优势,解决了影响算力的大问题,非常值得表扬。随着AI的快速发展,诞生的存内计算可以有效消除存储单元与计算单元之间的数据传输耗能过高、速度有限的情况,从而有效解决冯·诺依曼架构的瓶颈。知存科技的基于存内计算ZT1开发版的降噪验证,也是给人工智能领域带来了强心剂,从个人使用体验来讲,这是一个非常棒的经历,切实感受到了它的强大功能及特点。我相信,在不久的以后关于人工智能的新技术还会相继而出,也希望人工智能领域继续完善和发展,也期待存内计算再创新的辉煌,也预祝知存科技的相关技术更上一层楼!

参考文献

1、存内计算的使用手册:WTM2101 EVB(ZT1)用户使用手册V1.1

2、存内计算芯片研究进展及应用_郭昕婕

3、中国移动研究院完成业界首次忆阻 器存算一体芯片的端到端技术验证 - 移动通信网

这篇关于存内计算技术打破常规算力局限性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/612994

相关文章

如何用GPU算力卡P100玩黑神话悟空?

精力有限,只记录关键信息,希望未来能够有助于其他人。 文章目录 综述背景评估游戏性能需求显卡需求CPU和内存系统需求主机需求显式需求 实操硬件安装安装操作系统Win11安装驱动修改注册表选择程序使用什么GPU 安装黑神话悟空其他 综述 用P100 + PCIe Gen3.0 + Dell720服务器(32C64G),运行黑神话悟空画质中等流畅运行。 背景 假设有一张P100-

Banana Pi BPI-F3 进迭时空RISC-V架构下,AI融合算力及其软件栈实践

RISC-V架构下,AI融合算力及其软件栈实践 面对未来大模型(LLM)、AIGC等智能化浪潮的挑战,进迭时空在RISC-V方向全面布局,通过精心设计的RISC-V DSA架构以及软硬一体的优化策略,将全力为未来打造高效且易用的AI算力解决方案。目前,进迭时空已经取得了显著的进展,成功推出了第一个版本的智算核(带AI融合算力的智算CPU)以及配套的AI软件栈。 软件栈简介 AI算法部署旨

GPU算力租用平台推荐

国内知名云计算平台14: 阿里云:国内领先的云计算服务提供商,GPU 算力租用服务通过 ECS(Elastic Compute Service)实例提供。提供多种 GPU 实例类型,如 NVIDIA Tesla V100、P100 等,适用于 AI 训练、视频编解码等应用。优势在于中国市场领先,在中国本地有广泛的用户基础和完善的服务支持;拥有强大的数据处理能力,提供 MaxCompute、Data

SOC 阵列:创新算力的未来之路

一、SOC阵列的概念与发展历程 SOC 阵列是由多个特定功能集成电路组合在一个芯片上的系统或产品,包含硬件系统及嵌入式软件。从传统集成电路到 SOC 经历多个阶段,初期电路由分立元件组成,后集成到单芯片集成电路中,其发展遵循摩尔定律,从 SSI 到 MSI、LSI 再到代表 VLSI 的 SOC 阵列。SOC 阵列在电子系统中地位凸显,实现小型化、提高效率、降低功耗和整体性能,如在便携设备中使设

有关于算力

1、如何估计一个推理算法需要的算力 估计一个推理算法所需的算力是一个多维度的任务,涉及算法复杂性、模型大小、输入数据特征、硬件架构等多个因素。以下是如何估计推理算法算力需求的步骤和关键考虑因素: 1. 理解模型复杂性 a. 模型架构 层数和类型:模型的深度(层数)和层的类型(卷积层、全连接层、循环层等)直接影响计算量。卷积层和全连接层通常计算量较大。参数数量:模型中参数的数量越多,推理时的

【ISSCC】论文详解-34.6 28nm 72.12TFLOPS/W混合存内计算架构

本文介绍ISSCC34.6文章,题目是《A 28nm 72.12TFLOPS/W Hybrid-Domain Outer-Product Based Floating-Point SRAM Computing-in-Memory Macro with Logarithm Bit-Width Residual ADC》(一种28nm 72.12TFLOPS/W混合域外积浮点SRAM存内计算宏单元,具

基于智能巡检机器人的算力评估指标及其应用场景分析

随着工业自动化和智能化的发展,智能巡检机器人在各类复杂环境中的应用日益广泛。机器人通常需要在复杂、多变的环境中自主执行任务,如设备检测、数据采集、故障诊断等。为了确保巡检机器人的高效运行,计算能力(算力)的评估和优化显得尤为重要。 智能巡检机器人概述 智能巡检机器人是一类能够在无人干预下自动执行巡检任务的机器人系统,广泛应用于工业自动化领域。巡检机器人配备了多种传感器和

百度 AI Studio 脚本任务篇,它不同于notebook任务是支持免费的, 脚本任务是需要算力卡的,更好的算力 支持四张显卡,

aistudio 脚本任务是需要算力卡的,是收费的一个项目,估计是运行效率更高,支持4张显卡,同时计算。 # -*- coding: utf-8 -*- """ 空白模板 """ ######  欢迎使用脚本任务,首先让我们熟悉脚本任务的一些使用规则  ###### # 详细教程请在AI Studio文档(https://ai.baidu.com/ai-doc/AISTUDIO/Ik3e3g4l

IaaS、PaaS、SaaS是什么;算力共享商业模式;吸纳零散算力,提供高价值网络连接,促使算力流通; 以SRv6 SID为抓手,构建算网SaaS生态运营体系

目录 IaaS、PaaS、SaaS是什么 1. IaaS(基础设施即服务) 2. PaaS(平台即服务) 3. SaaS(软件即服务) 算力共享商业模式 云网融合,助力“东数西算”工程 吸纳零散算力,提供高价值网络连接,促使算力流通  以SRv6 SID为抓手,构建算网SaaS生态运营体系 IaaS、PaaS、SaaS是什么 IaaS(Infrastructur

算力网络痛点;对象存储OSS;CPN功能模块

目录 算力网络 算力网络痛点:度量困难、种类繁多、分布广泛、归属复杂。 CPN功能模块 对象存储OSS 算力网络 在分析算力资源的特点前,我们首先要明确算力的概念。算力,也称为计算力或计算能力。该词的最早来源已经不可查证,互联网上的资料大多与区块链相关。这是因为区块链技术采用的是哈希算法,即在相同时间内挖出更多的“币”,也就是说谁算得快谁就能获得更多的收益。因此,人们就