学习笔记:在华为昇腾NPU上进行深度学习项目【未完待续】

2024-01-16 06:12

本文主要是介绍学习笔记:在华为昇腾NPU上进行深度学习项目【未完待续】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在NPU上做深度学习算法

  • 场景和功能说明
  • 系统信息查询
    • 1、场景一:非NPU上训练的模型推理
      • 1.1 执行方案
        • 学习案例
      • 1.2 CPU/GPU训练的模型转.ONNX模型
      • 1.3 onnx转om
      • 1.4 om推理

昇腾社区链接: 昇腾社区-官网丨昇腾万里 让智能无所不及

场景和功能说明

  • 第一种:在cpu或gpu上训练的模型,但要在NPU上执行模型推理;
  • 第二种:在NPU上同步训练、推理。

系统信息查询

中括号里的为查询结果示例。
– 查看系统架构:uname -a [aarch64,也称arm64]
– 查看操作系统版本:lsb_release -a [Ubuntu 22.04.3 LTS]
– 查看npu芯片型号:npu-smi info [Ascend310B4]
– 查看npu id:npu-smi info -l
– 查看Atlas产品型号:npu-smi info -t product -i <npu id> [Atlas 200I A2]

1、场景一:非NPU上训练的模型推理

此种使用场景下,cpu或gpu上训练的模型无法直接在nup上执行推理,需要先把训练好的模型转换成.om离线模型,才可以在NPU上执行后续的推理。

1.1 执行方案

step1:在已安装CANN开发环境的机器上,把cpu或gpu上训练的模型转换成.onnx格式 或 pd格式
step2:在安装CANN运行环境的机器上,把onnx格式转om格式。
对应CANN开发环境运行环境的区别、安装方法见官方文档:CANN软件安装

学习案例

① 官方gitee项目-支持tensorflow、pytorch的模型转换 这里已经集成了多种开源模型从初始模型 —> onnx模型 —> om模型转换操作步骤对应代码

  • 第一阶段:模型转onnx需要写代码完成;
  • 第二阶段:.onnx转.om使用atc命令完成,无须写代码。

② 仅onnx模型 —> om模型的转换案例:昇腾社区简单ATC转换案例
③ om模型的推理应用案例 这里的快速链接是昇腾社区下pytorch的应用案例,昇腾社区也集成了其他训练框架的应用案例,可自行查看。
④ 其他网友的分享:[推理部署]🌔ONNX推理加速技术文档-杂记

1.2 CPU/GPU训练的模型转.ONNX模型

以下是基于 bert_base_chinese预训练模型转onnx 改写的转换代码:

  • 源文件:基于bert_base_chinese模型微调后的.pt模型文件
  • 目标:把.pt转换成.onnx
import torch
import onnx
import numpy as np
import onnxruntime
from init.init_config import ModelConfig'''
1、pth文件转onnx:pytorch框架中集成了onnx模块,属于官方支持,onnx也覆盖了pytorch框架中的大部分算子。因此将pth模型文件转换为onnx文件非常简单。参考:https://zhuanlan.zhihu.com/p/524023964?utm_id=0
2、.pth转.onnx可以在任意机器上执行,只要有python并安装了对应依赖包即可,既可以是普通windows x86_64 gpu/cpu,也可以是linux Ascend310B4(昇腾 310B4 npu卡)
3、本文件中:
① 使用的是“基于bert-base-chinese微调的模型”,微调时的输入样本只有一个序列,所以训练时把token_type_ids也省略了;
② 和原始bert-base-chinese预训练模型input_shape=(batch_size,max_len)不同,微调训练使用的input_shape=(src_len,batch_size), attention_mask_shape=(batch_size,src_len), src_len是固定的512。
注意:Atlas 200/500 A2推理产品不支持动态Shape输入(设置Shape范围)。 详见官方文档 https://www.hiascend.com/document/detail/zh/canncommercial/70RC1/inferapplicationdev/aclpythondevg/aclpythondevg_0060.html
'''model_path = 'E:\\opencode\\13-02-BertWithPretrained-main\\cache1\\ner_model_epoch1_steps1000.pt'  # 微调后的模型文件
onnx_path = "./ner_model_bert.onnx"  # 定义onnx模型保存地址。固定max_len=512
# 注意token_id的shape=(src_len, batch_size)
input_shape = (512, 1)# todo 这里和原始模型在CPU或GPU上的加载方式保持一样。这里代码省略。。。。
model_config = ModelConfig()def load_torch_model():invoice_model = model_config.model# 在导出模型之前必须调用 model.eval() 或 model.train(False),因为这会将模型设置为“推理模式”。 这是必需的,因为 dropout 或 batchnorm 等运算符在推理和训练模式下的行为有所不同。invoice_model.eval()return invoice_modeldef onnx_model_predict(onnx_path, dummy_input):# 创建会话,用于推理'''这里 onnxruntime.InferenceSession(model_path) 就是加载模型的步骤,ONNX Runtime 会在内部执行模型的验证。如果模型有问题,ONNX Runtime 将在加载过程中引发异常。因此,在使用 ONNX Runtime 进行推理时,你通常不需要显式地调用 onnx.load(onnx_path) 和 onnx.checker.check_model(onnx_model)。 # 模型加载onnx_model = onnx.load(onnx_path)onnx.checker.check_model(onnx_model)'''ort_session = onnxruntime.InferenceSession(onnx_path)# 获取模型的输入"input"inputs = ort_session.get_inputs()# bert基础模型设置:定义模型的输入{"input":numpys数组-不是tensor}和输出 ["output"]padding_mask = np.transpose((dummy_input == 0))# 省略token_type_ids的写法,和源模型转onnx时的input保持一致!ort_inputs = {inputs[0].name: dummy_input,inputs[1].name: padding_mask}outputs = ort_session.get_outputs()output_name = [outputs[0].name]# 模型推理ort_outs = ort_session.run(output_name, ort_inputs)return ort_outsdef export_config(token_ids, padding_mask, keep=True):'''使用的是bert-base-chinese模型,常规输入包含input_ids、attention_mask、token_type_ids:param token_ids: 句子输入编码:param padding_mask: 掩码:param keep: 是否保留token_type_ids:return:'''output_names = ["out"]if keep:input_data = (token_ids,padding_mask,token_ids)input_names = ["input_ids", "attention_mask", "token_type_ids"]dynamic_axes = {"input_ids": {0: "B"},"attention_mask": {0: "B"},"token_type_ids": {0: "B"},"out": {0: "B"}}else:input_data = (token_ids,padding_mask)input_names = ["input_ids", "attention_mask"]dynamic_axes = {"input_ids": {0: "B"},"attention_mask": {0: "B"},"out": {0: "B"}}return input_data, input_names, output_names, dynamic_axesdef torch2onnx(dummy_input):torch_model = load_torch_model(model_path)token_ids = torch.from_numpy(dummy_input)  # numpy.ndarray转torch.tensor# bert基础模型设置padding_mask = (token_ids == 0).transpose(0, 1)# build data# 因为这里使用的是“基于bert-base-chinese微调的模型”,微调时的输入样本只有一个序列,所以token_type_ids可省略input_data, input_names, output_names, dynamic_axes = export_config(token_ids, padding_mask, keep=False)# onnx模型导出:verbose--是否打印日志torch.onnx.export(torch_model, input_data, onnx_path,verbose=True,opset_version=11,dynamic_axes=dynamic_axes,input_names=input_names,output_names=output_names)# 测试模型是否合理# 模型加载onnx_model = onnx.load(onnx_path)# 检查onnx模型转换是否合理onnx.checker.check_model(onnx_model)def onnx_predict(dummy_input, onnx_path):# 1、原始torch模型加载和推理origin_model = load_torch_model(model_path)input_sample_tensor = dummy_inputif isinstance(dummy_input, np.ndarray):input_sample_tensor = torch.from_numpy(dummy_input).to(device)torch_out = origin_model(input_sample_tensor).detach().numpy()# 2、onnx模型加载和推理ort_outs = onnx_model_predict(onnx_path, dummy_input)# 3、结果对比# todo 使用numpy的测试工具,检查两个数组是否在给定的相对和绝对误差范围内相等。np.testing.assert_allclose是一个测试断言语句,如果检查失败(即输出不在指定误差范围内),将引发 AssertionError,从而提示测试失败。#  (1)检查形状:确保 torch_out 和 ort_outs[0] 的形状相同。 (2)检查数值相等性: 对每个对应的元素,检查其数值是否在相对误差 (rtol) 和绝对误差 (atol) 允许的范围内。np.testing.assert_allclose(torch_out, ort_outs[0], rtol=1e-01, atol=1e-5)print(torch_out[:10])print(ort_outs[0][:10])print("convert success")if __name__ == "__main__":# #(方案1)随机型:在测试转换前后的误差时,需要传递同一输入值# input_sample = np.random.randn(*input_shape).astype(np.float32)# # (方案2)固定值型device = torch.device("cuda" if torch.cuda.is_available() else "cpu")dummy_input = np.ones(input_shape).astype(np.long)# 普通模型转onnxtorch2onnx(dummy_input)# 简单测试转换前后的精度差异onnx_predict(dummy_input, onnx_path)

1.3 onnx转om

具体指令参考 昇腾社区简单ATC转换案例

1.4 om推理

这篇关于学习笔记:在华为昇腾NPU上进行深度学习项目【未完待续】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611559

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

定价129元!支持双频 Wi-Fi 5的华为AX1路由器发布

《定价129元!支持双频Wi-Fi5的华为AX1路由器发布》华为上周推出了其最新的入门级Wi-Fi5路由器——华为路由AX1,建议零售价129元,这款路由器配置如何?详细请看下文介... 华为 Wi-Fi 5 路由 AX1 已正式开售,新品支持双频 1200 兆、配有四个千兆网口、提供可视化智能诊断功能,建

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动