学习笔记:在华为昇腾NPU上进行深度学习项目【未完待续】

2024-01-16 06:12

本文主要是介绍学习笔记:在华为昇腾NPU上进行深度学习项目【未完待续】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在NPU上做深度学习算法

  • 场景和功能说明
  • 系统信息查询
    • 1、场景一:非NPU上训练的模型推理
      • 1.1 执行方案
        • 学习案例
      • 1.2 CPU/GPU训练的模型转.ONNX模型
      • 1.3 onnx转om
      • 1.4 om推理

昇腾社区链接: 昇腾社区-官网丨昇腾万里 让智能无所不及

场景和功能说明

  • 第一种:在cpu或gpu上训练的模型,但要在NPU上执行模型推理;
  • 第二种:在NPU上同步训练、推理。

系统信息查询

中括号里的为查询结果示例。
– 查看系统架构:uname -a [aarch64,也称arm64]
– 查看操作系统版本:lsb_release -a [Ubuntu 22.04.3 LTS]
– 查看npu芯片型号:npu-smi info [Ascend310B4]
– 查看npu id:npu-smi info -l
– 查看Atlas产品型号:npu-smi info -t product -i <npu id> [Atlas 200I A2]

1、场景一:非NPU上训练的模型推理

此种使用场景下,cpu或gpu上训练的模型无法直接在nup上执行推理,需要先把训练好的模型转换成.om离线模型,才可以在NPU上执行后续的推理。

1.1 执行方案

step1:在已安装CANN开发环境的机器上,把cpu或gpu上训练的模型转换成.onnx格式 或 pd格式
step2:在安装CANN运行环境的机器上,把onnx格式转om格式。
对应CANN开发环境运行环境的区别、安装方法见官方文档:CANN软件安装

学习案例

① 官方gitee项目-支持tensorflow、pytorch的模型转换 这里已经集成了多种开源模型从初始模型 —> onnx模型 —> om模型转换操作步骤对应代码

  • 第一阶段:模型转onnx需要写代码完成;
  • 第二阶段:.onnx转.om使用atc命令完成,无须写代码。

② 仅onnx模型 —> om模型的转换案例:昇腾社区简单ATC转换案例
③ om模型的推理应用案例 这里的快速链接是昇腾社区下pytorch的应用案例,昇腾社区也集成了其他训练框架的应用案例,可自行查看。
④ 其他网友的分享:[推理部署]🌔ONNX推理加速技术文档-杂记

1.2 CPU/GPU训练的模型转.ONNX模型

以下是基于 bert_base_chinese预训练模型转onnx 改写的转换代码:

  • 源文件:基于bert_base_chinese模型微调后的.pt模型文件
  • 目标:把.pt转换成.onnx
import torch
import onnx
import numpy as np
import onnxruntime
from init.init_config import ModelConfig'''
1、pth文件转onnx:pytorch框架中集成了onnx模块,属于官方支持,onnx也覆盖了pytorch框架中的大部分算子。因此将pth模型文件转换为onnx文件非常简单。参考:https://zhuanlan.zhihu.com/p/524023964?utm_id=0
2、.pth转.onnx可以在任意机器上执行,只要有python并安装了对应依赖包即可,既可以是普通windows x86_64 gpu/cpu,也可以是linux Ascend310B4(昇腾 310B4 npu卡)
3、本文件中:
① 使用的是“基于bert-base-chinese微调的模型”,微调时的输入样本只有一个序列,所以训练时把token_type_ids也省略了;
② 和原始bert-base-chinese预训练模型input_shape=(batch_size,max_len)不同,微调训练使用的input_shape=(src_len,batch_size), attention_mask_shape=(batch_size,src_len), src_len是固定的512。
注意:Atlas 200/500 A2推理产品不支持动态Shape输入(设置Shape范围)。 详见官方文档 https://www.hiascend.com/document/detail/zh/canncommercial/70RC1/inferapplicationdev/aclpythondevg/aclpythondevg_0060.html
'''model_path = 'E:\\opencode\\13-02-BertWithPretrained-main\\cache1\\ner_model_epoch1_steps1000.pt'  # 微调后的模型文件
onnx_path = "./ner_model_bert.onnx"  # 定义onnx模型保存地址。固定max_len=512
# 注意token_id的shape=(src_len, batch_size)
input_shape = (512, 1)# todo 这里和原始模型在CPU或GPU上的加载方式保持一样。这里代码省略。。。。
model_config = ModelConfig()def load_torch_model():invoice_model = model_config.model# 在导出模型之前必须调用 model.eval() 或 model.train(False),因为这会将模型设置为“推理模式”。 这是必需的,因为 dropout 或 batchnorm 等运算符在推理和训练模式下的行为有所不同。invoice_model.eval()return invoice_modeldef onnx_model_predict(onnx_path, dummy_input):# 创建会话,用于推理'''这里 onnxruntime.InferenceSession(model_path) 就是加载模型的步骤,ONNX Runtime 会在内部执行模型的验证。如果模型有问题,ONNX Runtime 将在加载过程中引发异常。因此,在使用 ONNX Runtime 进行推理时,你通常不需要显式地调用 onnx.load(onnx_path) 和 onnx.checker.check_model(onnx_model)。 # 模型加载onnx_model = onnx.load(onnx_path)onnx.checker.check_model(onnx_model)'''ort_session = onnxruntime.InferenceSession(onnx_path)# 获取模型的输入"input"inputs = ort_session.get_inputs()# bert基础模型设置:定义模型的输入{"input":numpys数组-不是tensor}和输出 ["output"]padding_mask = np.transpose((dummy_input == 0))# 省略token_type_ids的写法,和源模型转onnx时的input保持一致!ort_inputs = {inputs[0].name: dummy_input,inputs[1].name: padding_mask}outputs = ort_session.get_outputs()output_name = [outputs[0].name]# 模型推理ort_outs = ort_session.run(output_name, ort_inputs)return ort_outsdef export_config(token_ids, padding_mask, keep=True):'''使用的是bert-base-chinese模型,常规输入包含input_ids、attention_mask、token_type_ids:param token_ids: 句子输入编码:param padding_mask: 掩码:param keep: 是否保留token_type_ids:return:'''output_names = ["out"]if keep:input_data = (token_ids,padding_mask,token_ids)input_names = ["input_ids", "attention_mask", "token_type_ids"]dynamic_axes = {"input_ids": {0: "B"},"attention_mask": {0: "B"},"token_type_ids": {0: "B"},"out": {0: "B"}}else:input_data = (token_ids,padding_mask)input_names = ["input_ids", "attention_mask"]dynamic_axes = {"input_ids": {0: "B"},"attention_mask": {0: "B"},"out": {0: "B"}}return input_data, input_names, output_names, dynamic_axesdef torch2onnx(dummy_input):torch_model = load_torch_model(model_path)token_ids = torch.from_numpy(dummy_input)  # numpy.ndarray转torch.tensor# bert基础模型设置padding_mask = (token_ids == 0).transpose(0, 1)# build data# 因为这里使用的是“基于bert-base-chinese微调的模型”,微调时的输入样本只有一个序列,所以token_type_ids可省略input_data, input_names, output_names, dynamic_axes = export_config(token_ids, padding_mask, keep=False)# onnx模型导出:verbose--是否打印日志torch.onnx.export(torch_model, input_data, onnx_path,verbose=True,opset_version=11,dynamic_axes=dynamic_axes,input_names=input_names,output_names=output_names)# 测试模型是否合理# 模型加载onnx_model = onnx.load(onnx_path)# 检查onnx模型转换是否合理onnx.checker.check_model(onnx_model)def onnx_predict(dummy_input, onnx_path):# 1、原始torch模型加载和推理origin_model = load_torch_model(model_path)input_sample_tensor = dummy_inputif isinstance(dummy_input, np.ndarray):input_sample_tensor = torch.from_numpy(dummy_input).to(device)torch_out = origin_model(input_sample_tensor).detach().numpy()# 2、onnx模型加载和推理ort_outs = onnx_model_predict(onnx_path, dummy_input)# 3、结果对比# todo 使用numpy的测试工具,检查两个数组是否在给定的相对和绝对误差范围内相等。np.testing.assert_allclose是一个测试断言语句,如果检查失败(即输出不在指定误差范围内),将引发 AssertionError,从而提示测试失败。#  (1)检查形状:确保 torch_out 和 ort_outs[0] 的形状相同。 (2)检查数值相等性: 对每个对应的元素,检查其数值是否在相对误差 (rtol) 和绝对误差 (atol) 允许的范围内。np.testing.assert_allclose(torch_out, ort_outs[0], rtol=1e-01, atol=1e-5)print(torch_out[:10])print(ort_outs[0][:10])print("convert success")if __name__ == "__main__":# #(方案1)随机型:在测试转换前后的误差时,需要传递同一输入值# input_sample = np.random.randn(*input_shape).astype(np.float32)# # (方案2)固定值型device = torch.device("cuda" if torch.cuda.is_available() else "cpu")dummy_input = np.ones(input_shape).astype(np.long)# 普通模型转onnxtorch2onnx(dummy_input)# 简单测试转换前后的精度差异onnx_predict(dummy_input, onnx_path)

1.3 onnx转om

具体指令参考 昇腾社区简单ATC转换案例

1.4 om推理

这篇关于学习笔记:在华为昇腾NPU上进行深度学习项目【未完待续】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611559

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

如何在Spring Boot项目中集成MQTT协议

《如何在SpringBoot项目中集成MQTT协议》本文介绍在SpringBoot中集成MQTT的步骤,包括安装Broker、添加EclipsePaho依赖、配置连接参数、实现消息发布订阅、测试接口... 目录1. 准备工作2. 引入依赖3. 配置MQTT连接4. 创建MQTT配置类5. 实现消息发布与订阅

springboot项目打jar制作成镜像并指定配置文件位置方式

《springboot项目打jar制作成镜像并指定配置文件位置方式》:本文主要介绍springboot项目打jar制作成镜像并指定配置文件位置方式,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录一、上传jar到服务器二、编写dockerfile三、新建对应配置文件所存放的数据卷目录四、将配置文

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

怎么用idea创建一个SpringBoot项目

《怎么用idea创建一个SpringBoot项目》本文介绍了在IDEA中创建SpringBoot项目的步骤,包括环境准备(JDK1.8+、Maven3.2.5+)、使用SpringInitializr... 目录如何在idea中创建一个SpringBoot项目环境准备1.1打开IDEA,点击New新建一个项