【PyTorch简介】5.Autograd 自动微分

2024-01-15 23:12

本文主要是介绍【PyTorch简介】5.Autograd 自动微分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

5.Autograd 自动微分

文章目录

  • 5.Autograd 自动微分
  • Automatic Differentiation with `torch.autograd` 自动微分与`torch.autograd`
  • Tensors, Functions and Computational graph 张量、函数和计算图
    • 笔记
  • Computing Gradients 计算梯度
    • Note 笔记
    • Disabling Gradient Tracking 禁用梯度跟踪
    • More on Computational Graphs 有关计算图的更多信息
    • Note 笔记
  • Optional Reading: Tensor Gradients and Jacobian Products 可选阅读:张量梯度和雅可比积
    • Note 笔记
  • Further Reading 进一步阅读
  • 参考文献
  • Github

Automatic Differentiation with torch.autograd 自动微分与torch.autograd

在训练神经网络时,最常用的算法是 反向传播。在该算法中,根据损失函数相对于给定参数的梯度来调整参数(模型权重) 。

为了计算这些梯度,PyTorch 有一个名为torch.autograd的内置微分引擎。它支持任何计算图的梯度自动计算。

考虑最简单的一层神经网络,具有输入x、参数wb,以及一些损失函数。它可以通过以下方式在 PyTorch 中定义:

import torchx = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w)+b
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

Tensors, Functions and Computational graph 张量、函数和计算图

该代码定义了以下计算图

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在这个网络中,wb是我们需要优化的参数。因此,我们需要能够计算损失函数相对于这些变量的梯度。为了做到这一点,我们设置了这些张量的requires_grad属性。

笔记

您可以在创建张量时设置requires_grad的值,也可以稍后使用x.requires_grad_(True)方法设置。

实际上,我们应用于张量来构造计算图的函数是类Function的对象。该对象知道如何计算前向函数,以及如何在向后传播步骤中计算其导数。对反向传播函数的引用存储在张量的grad_fn属性中。您可以在Function 文档中找到更多信息。

print(f"Gradient function for z = {z.grad_fn}")
print(f"Gradient function for loss = {loss.grad_fn}")

Out:

Gradient function for z = <AddBackward0 object at 0x7f083264cd60>
Gradient function for loss = <BinaryCrossEntropyWithLogitsBackward0 object at 0x7f083264eec0>

Computing Gradients 计算梯度

为了优化神经网络中参数的权重,我们需要计算损失函数关于参数的导数。即,在xy为固定值的情况下,计算 ∂ l o s s ∂ w \frac {\partial loss}{\partial w} wloss ∂ l o s s ∂ b \frac {\partial loss}{\partial b} bloss。为了计算这些导数,我们调用 loss.backward() ,然后从w.gradb.grad检索相应的值:

loss.backward()
print(w.grad)
print(b.grad)

Out:

tensor([[0.3313, 0.0626, 0.2530],[0.3313, 0.0626, 0.2530],[0.3313, 0.0626, 0.2530],[0.3313, 0.0626, 0.2530],[0.3313, 0.0626, 0.2530]])
tensor([0.3313, 0.0626, 0.2530])

Note 笔记

  • 我们只能获取计算图的叶节点的grad属性,其requires_grad属性设置为True。对于我们图中的其他节点,梯度将不可用。
  • 出于性能原因,我们只能在给定图上使用 backward执行一次梯度计算。如果我们需要在同一个图上进行多次backward调用,我们需要将retain_graph=True传递给backward调用。

Disabling Gradient Tracking 禁用梯度跟踪

默认情况下,所有张量都会设置requires_grad=True,来跟踪其计算历史并支持梯度计算。然而,在某些情况下,我们不需要这样做。例如,当我们训练完模型,并且只想将其应用于某些输入数据时,即我们只想通过网络进行*前向计算。*我们可以通过使用torch.no_grad()块包围我们的计算代码,来停止跟踪计算:

z = torch.matmul(x, w)+b
print(z.requires_grad)with torch.no_grad():z = torch.matmul(x, w)+b
print(z.requires_grad)

Out:

True
False

获得相同结果的另一种方法是在张量上使用detach()方法:

z = torch.matmul(x, w)+b
z_det = z.detach()
print(z_det.requires_grad)

Out:

False

您可能想要禁用梯度跟踪的原因有:

  • 将神经网络中的某些参数标记为冻结参数
  • 当您仅进行前向传递时加快计算速度,因为对不跟踪梯度的张量进行计算会更有效。

More on Computational Graphs 有关计算图的更多信息

从概念上讲,在由Function 对象组成的有向无环图 (DAG) 中,autograd 保存数据(张量)和所有执行的操作(以及生成的新张量)的记录 。在这个 DAG 中,叶子是输入张量,根是输出张量。通过从根到叶追踪该图,您可以使用链式法则自动计算梯度。

在前向传递中,autograd 同时执行两件事:

  • 运行请求的操作,来计算结果张量
  • 在 DAG 中,维护操作的梯度函数。

当在 DAG 根上调用.backward()时,后向传递开始。autograd然后:

  • 计算每个.grad_fn的梯度,
  • 在各自张量的.grad属性中,将累积它们
  • 使用链式法则,一直传播到叶张量。

Note 笔记

在 PyTorch 中,DAG 是动态的

需要注意的重要一点是,图是从头开始重新创建的。每次调用 .backward()后,autograd 都会开始填充新图。这正是允许您在模型中使用控制流语句的原因。如果需要,您可以在每次迭代时更改形状、大小和操作。

Optional Reading: Tensor Gradients and Jacobian Products 可选阅读:张量梯度和雅可比积

在许多情况下,我们有一个标量损失函数,并且需要计算某些参数的梯度。然而,在某些情况下,输出函数是任意张量。在这种情况下,PyTorch 允许您计算所谓的雅可比积,而不是实际的梯度。

对于向量函数 y ⃗ = f ( x ⃗ ) \vec y = f(\vec x) y =f(x ) ,当 x ⃗ = < x 1 , … , x n > \vec x = <x_1,\dots,x_n> x =<x1,,xn> y ⃗ = < y 1 , … , y m > \vec y = <y_1,\dots,y_m> y =<y1,,ym> 时,相对于 x ⃗ \vec x x y ⃗ \vec y y 的梯度,是由雅可比矩阵计算的:

J = ( ∂ y 1 ∂ x 1 ⋯ ∂ y 1 ∂ x n ⋮ ⋱ ⋮ ∂ y m ∂ x 1 ⋯ ∂ y m ∂ x n ) J= \begin{pmatrix} \frac {\partial y_1}{ \partial x_1} & \cdots & \frac {\partial y_1}{ \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac {\partial y_m}{ \partial x_1} & \cdots & \frac {\partial y_m}{ \partial x_n} \end{pmatrix} J= x1y1x1ymxny1xnym

对于一个给定的输入向量 v = ( v 1 … v m ) v = (v_1 \dots v_m) v=(v1vm) ,PyTorch 允许您计算雅可比积 v T ⋅ J v^T \cdot J vTJ,而不是计算雅可比矩阵本身。这是通过把 v v v 作为参数,调用backward,来实现的。 v v v 的大小应与原始张量的大小相同,我们要计算其乘积:

inp = torch.eye(4, 5, requires_grad=True)
out = (inp+1).pow(2).t()
out.backward(torch.ones_like(out), retain_graph=True)
print(f"First call\n{inp.grad}")
out.backward(torch.ones_like(out), retain_graph=True)
print(f"\nSecond call\n{inp.grad}")
inp.grad.zero_()
out.backward(torch.ones_like(out), retain_graph=True)
print(f"\nCall after zeroing gradients\n{inp.grad}")

Out:

First call
tensor([[4., 2., 2., 2., 2.],[2., 4., 2., 2., 2.],[2., 2., 4., 2., 2.],[2., 2., 2., 4., 2.]])Second call
tensor([[8., 4., 4., 4., 4.],[4., 8., 4., 4., 4.],[4., 4., 8., 4., 4.],[4., 4., 4., 8., 4.]])Call after zeroing gradients
tensor([[4., 2., 2., 2., 2.],[2., 4., 2., 2., 2.],[2., 2., 4., 2., 2.],[2., 2., 2., 4., 2.]])

请注意,当我们使用相同的参数第二次调用backward时,梯度的值是不同的。发生这种情况是因为在进行backward传播时,PyTorch会累积梯度。即,将计算出的梯度值添加到计算图所有叶节点的grad属性中。如果你想计算正确的梯度,你需要先将grad属性归零 。在实际训练中,优化器可以帮助我们做到这一点。

Note 笔记

以前,我们调用不带参数的backward()函数。这本质上相当于调用 backward(torch.tensor(1.0)),这是在标量值函数(例如,神经网络训练期间的损失)的情况下,计算梯度的有用方法。

Further Reading 进一步阅读

  • Autograd Mechanics

参考文献

Automatic Differentiation with torch.autograd — PyTorch Tutorials 2.2.0+cu121 documentation

Automatic Differentiation with torch.autograd — PyTorch Tutorials 2.2.0+cu121 documentation

Github

storm-ice/Get_started_with_PyTorch

storm-ice/Get_started_with_PyTorch

这篇关于【PyTorch简介】5.Autograd 自动微分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610507

相关文章

ASIO网络调试助手之一:简介

多年前,写过几篇《Boost.Asio C++网络编程》的学习文章,一直没机会实践。最近项目中用到了Asio,于是抽空写了个网络调试助手。 开发环境: Win10 Qt5.12.6 + Asio(standalone) + spdlog 支持协议: UDP + TCP Client + TCP Server 独立的Asio(http://www.think-async.com)只包含了头文件,不依

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

业务协同平台--简介

一、使用场景         1.多个系统统一在业务协同平台定义协同策略,由业务协同平台代替人工完成一系列的单据录入         2.同时业务协同平台将执行任务推送给pda、pad等执行终端,通知各人员、设备进行作业执行         3.作业过程中,可设置完成时间预警、作业节点通知,时刻了解作业进程         4.做完再给你做过程分析,给出优化建议         就问你这一套下

Python3 BeautifulSoup爬虫 POJ自动提交

POJ 提交代码采用Base64加密方式 import http.cookiejarimport loggingimport urllib.parseimport urllib.requestimport base64from bs4 import BeautifulSoupfrom submitcode import SubmitCodeclass SubmitPoj():de

容器编排平台Kubernetes简介

目录 什么是K8s 为什么需要K8s 什么是容器(Contianer) K8s能做什么? K8s的架构原理  控制平面(Control plane)         kube-apiserver         etcd         kube-scheduler         kube-controller-manager         cloud-controlle

【Tools】AutoML简介

摇来摇去摇碎点点的金黄 伸手牵来一片梦的霞光 南方的小巷推开多情的门窗 年轻和我们歌唱 摇来摇去摇着温柔的阳光 轻轻托起一件梦的衣裳 古老的都市每天都改变模样                      🎵 方芳《摇太阳》 AutoML(自动机器学习)是一种使用机器学习技术来自动化机器学习任务的方法。在大模型中的AutoML是指在大型数据集上使用自动化机器学习技术进行模型训练和优化。

SaaS、PaaS、IaaS简介

云计算、云服务、云平台……现在“云”已成了一个家喻户晓的概念,但PaaS, IaaS 和SaaS的区别估计还没有那么多的人分得清,下面就分别向大家普及一下它们的基本概念: SaaS 软件即服务 SaaS是Software-as-a-Service的简称,意思是软件即服务。随着互联网技术的发展和应用软件的成熟, 在21世纪开始兴起的一种完全创新的软件应用模式。 它是一种通过Internet提供

LIBSVM简介

LIBSVM简介 支持向量机所涉及到的数学知识对一般的化学研究者来说是比较难的,自己编程实现该算法难度就更大了。但是现在的网络资源非常发达,而且国际上的科学研究者把他们的研究成果已经放在网络上,免费提供给用于研究目的,这样方便大多数的研究者,不必要花费大量的时间理解SVM算法的深奥数学原理和计算机程序设计。目前有关SVM计算的相关软件有很多,如LIBSVM、mySVM、SVMLight等,这些

urllib与requests爬虫简介

urllib与requests爬虫简介 – 潘登同学的爬虫笔记 文章目录 urllib与requests爬虫简介 -- 潘登同学的爬虫笔记第一个爬虫程序 urllib的基本使用Request对象的使用urllib发送get请求实战-喜马拉雅网站 urllib发送post请求 动态页面获取数据请求 SSL证书验证伪装自己的爬虫-请求头 urllib的底层原理伪装自己的爬虫-设置代理爬虫coo

Shell脚本实现自动登录服务器

1.登录脚本 login_server.sh #!/bin/bash# ReferenceLink:https://yq.aliyun.com/articles/516347#show all host infos of serverList.txtif [[ -f ./serverList.txt ]]thenhostNum=`cat ./serverList.txt | wc -l`e