【hihocoder [Offer收割]编程练习赛9 D】【简单DP】矩阵填数

2024-01-15 21:58

本文主要是介绍【hihocoder [Offer收割]编程练习赛9 D】【简单DP】矩阵填数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目4 : 矩阵填数

时间限制: 10000ms
单点时限: 1000ms
内存限制: 256MB

描述

小Hi在玩一个游戏,他需要把1, 2, 3, ... NM填入一个N行M列的矩阵中,使得矩阵每一行从左到右、每一列从上到下都是递增的。  

例如如下是3x3的一种填法:

136  
247  
589

给定N和M,小Hi希望知道一共有多少种不同的填法。

输入

一行包含两个整数N和M。  

对于60%的数据 1 <= N <= 2, 1 <= M <= 100000  

对于20%的数据 N = 3, 1 <= M <= 100  

对于100%的数据 1 <= N <= 3, 1 <= M <= 100000

输出

输出一共有多少种不同的填法。由于结果可能很大,你只需输出答案模109+7的余数。

样例输入
3 2
样例输出
5

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x, y) memset(x, y, sizeof(x))
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b > a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b < a)a = b; }
const int N = 0, M = 0, Z = 1e9 + 7, inf = 0x3f3f3f3f;
template <class T1, class T2>inline void gadd(T1 &a, T2 b) { a = (a + b) % Z; }
int casenum, casei;
int n, m;
LL qpow(LL x, int p)
{LL y = 1;while (p){if (p & 1) y = y * x % Z;x = x * x % Z;p >>= 1;}return y;
}
int main()
{while(~scanf("%d%d", &n, &m)){LL ans = 1;for (int i = 2; i <= n * m; ++i)ans = ans * i % Z;for (int i = 1; i <= n; ++i){for (int j = 1; j <= m; ++j){ans = ans * qpow(i + j - 1, Z - 2) % Z;}}printf("%lld\n", ans);}return 0;
}
/*
【题意】
n * m个点放入矩阵使得行列有序【分析】
★这种思维模式很重要★
其实,我们发现,这题,不光最后形成的n * m的矩阵需要满足横增竖增的条件,其他的任何一个子矩阵也都要满足这个条件。
也就是说。我们在形成一个n * m矩阵的过程中,从细到巨,每一步也都要符合目标的限制条件。
这样做法就有了——
我们for循环形成i*j的矩阵,之前的
(i - 1) * (j - 1)、(i)*(j - 1)、(i - 1)*j 这三种类型的矩阵显然都是满足目标条件的。
那么其实我们只要调整使得(i, j)这个点也满足这个条件即可。
如何调整呢?
与(i, j)产生关系的是其上面的i - 1个点和其左边的j - 1个点
这一共i + j - 1个点中,我们要调整(i, j)为相对最大的,所以/=(i + j - 1)
这样全部扫描一遍。就AC啦!*/


这篇关于【hihocoder [Offer收割]编程练习赛9 D】【简单DP】矩阵填数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610340

相关文章

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

使用IntelliJ IDEA创建简单的Java Web项目完整步骤

《使用IntelliJIDEA创建简单的JavaWeb项目完整步骤》:本文主要介绍如何使用IntelliJIDEA创建一个简单的JavaWeb项目,实现登录、注册和查看用户列表功能,使用Se... 目录前置准备项目功能实现步骤1. 创建项目2. 配置 Tomcat3. 项目文件结构4. 创建数据库和表5.

使用PyQt5编写一个简单的取色器

《使用PyQt5编写一个简单的取色器》:本文主要介绍PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16进制颜色编码,一款跟随鼠标刷新图像的RGB和16... 目录取色器1取色器2PyQt5搭建的一个取色器,一共写了两款应用,一款使用快捷键捕获鼠标附近图像的RGB和16

四种简单方法 轻松进入电脑主板 BIOS 或 UEFI 固件设置

《四种简单方法轻松进入电脑主板BIOS或UEFI固件设置》设置BIOS/UEFI是计算机维护和管理中的一项重要任务,它允许用户配置计算机的启动选项、硬件设置和其他关键参数,该怎么进入呢?下面... 随着计算机技术的发展,大多数主流 PC 和笔记本已经从传统 BIOS 转向了 UEFI 固件。很多时候,我们也

基于Qt开发一个简单的OFD阅读器

《基于Qt开发一个简单的OFD阅读器》这篇文章主要为大家详细介绍了如何使用Qt框架开发一个功能强大且性能优异的OFD阅读器,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 目录摘要引言一、OFD文件格式解析二、文档结构解析三、页面渲染四、用户交互五、性能优化六、示例代码七、未来发展方向八、结论摘要

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

hdu4826(三维DP)

这是一个百度之星的资格赛第四题 题目链接:http://acm.hdu.edu.cn/contests/contest_showproblem.php?pid=1004&cid=500 题意:从左上角的点到右上角的点,每个点只能走一遍,走的方向有三个:向上,向下,向右,求最大值。 咋一看像搜索题,先暴搜,TLE,然后剪枝,还是TLE.然后我就改方法,用DP来做,这题和普通dp相比,多个个向上