二叉树前序、中序、后序遍历相互求法 (原理,程序)

2024-01-15 20:38

本文主要是介绍二叉树前序、中序、后序遍历相互求法 (原理,程序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


今天来总结下二叉树前序、中序、后序遍历相互求法,即如果知道两个的遍历,如何求第三种遍历方法,比较笨的方法是画出来二叉树,然后根据各种遍历不同的特性来求,也可以编程求出,下面我们分别说明。

     首先,我们看看前序、中序、后序遍历的特性: 
前序遍历: 
    1.访问根节点 
    2.前序遍历左子树 
    3.前序遍历右子树 
中序遍历: 
    1.中序遍历左子树 
    2.访问根节点 
    3.中序遍历右子树 
后序遍历: 
    1.后序遍历左子树 
    2.后序遍历右子树 
    3.访问根节点

一、已知前序、中序遍历,求后序遍历

例:

前序遍历:         GDAFEMHZ

中序遍历:         ADEFGHMZ

画树求法:第一步,根据前序遍历的特点,我们知道根结点为G

              第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。

              第三步,观察左子树ADEF,左子树的中的根节点必然是大树的root的leftchild。在前序遍历中,大树的root的leftchild位于root之后,所以左子树的根节点为D。

              第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过前序遍历求得。在前序遍历中,一定是先把root和root的所有左子树节点遍历完之后才会遍历右子树,并且遍历的左子树的第一个节点就是左子树的根节点。同理,遍历的右子树的第一个节点就是右子树的根节点。

            第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:

1 确定根,确定左子树,确定右子树。

2 在左子树中递归。

3 在右子树中递归。

4 打印当前根。

那么,我们可以画出这个二叉树的形状:

那么,根据后序的遍历规则,我们可以知道,后序遍历顺序为:AEFDHZMG

编程求法:(依据上面的思路,写递归程序)

复制代码
 1 #include <iostream>  
 2 #include <fstream>  
 3 #include <string>  
 4 
 5 struct TreeNode
 6 {
 7   struct TreeNode* left;
 8   struct TreeNode* right;
 9   char  elem;
10 };
11 
12 void BinaryTreeFromOrderings(char* inorder, char* preorder, int length)
13 {
14   if(length == 0)
15     {
16       //cout<<"invalid length";
17       return;
18     }
19   TreeNode* node = new TreeNode;//Noice that [new] should be written out.
20   node->elem = *preorder;
21   int rootIndex = 0;
22   for(;rootIndex < length; rootIndex++)
23     {
24       if(inorder[rootIndex] == *preorder)
25       break;
26     }
27   //Left
28   BinaryTreeFromOrderings(inorder, preorder +1, rootIndex);
29   //Right
30   BinaryTreeFromOrderings(inorder + rootIndex + 1, preorder + rootIndex + 1, length - (rootIndex + 1));
31   cout<<node->elem<<endl;
32   return;
33 }
34 
35 
36 int main(int argc, char* argv[])
37 {
38     printf("Hello World!\n");
39     char* pr="GDAFEMHZ";
40     char* in="ADEFGHMZ";
41   
42     BinaryTreeFromOrderings(in, pr, 8);
43 
44     printf("\n");
45     return 0;
46 }
复制代码

输出的结果为:AEFDHZMG

二、已知中序和后序遍历,求前序遍历

依然是上面的题,这次我们只给出中序和后序遍历:

中序遍历:       ADEFGHMZ

后序遍历:       AEFDHZMG

画树求法:第一步,根据后序遍历的特点,我们知道后序遍历最后一个结点即为根结点,即根结点为G。

              第二步,观察中序遍历ADEFGHMZ。其中root节点G左侧的ADEF必然是root的左子树,G右侧的HMZ必然是root的右子树。

              第三步,观察左子树ADEF,后序遍历中,左子树AEFD的最后一个为左子树的root,也就是D为左子树的中的根节点。由中序遍历得,A为D的左子树,EF为D的右子树。观察后序遍历,EF中最后的一个F为其root。可以知道,E为F的左子树。

              第四步,同样的道理,root的右子树节点HMZ中的根节点也可以通过后序遍历求得。在后序遍历中,HZM最后一个M一定是右子树的根节点。

            第五步,观察发现,上面的过程是递归的。先找到当前树的根节点,然后划分为左子树,右子树,然后进入左子树重复上面的过程,然后进入右子树重复上面的过程。最后就可以还原一棵树了。该步递归的过程可以简洁表达如下:

1 确定根,确定左子树,确定右子树。

2 在左子树中递归。

3 在右子树中递归。

4 打印当前根。

这样,我们就可以画出二叉树的形状,如上图所示,这里就不再赘述。

那么,前序遍历:         GDAFEMHZ

编程求法:(并且验证我们的结果是否正确)

复制代码
#include <iostream>
#include <fstream>
#include <string>struct TreeNode
{struct TreeNode* left;struct TreeNode* right;char  elem;
};TreeNode* BinaryTreeFromOrderings(char* inorder, char* aftorder, int length)
{if(length == 0){return NULL;}TreeNode* node = new TreeNode;//Noice that [new] should be written out.node->elem = *(aftorder+length-1);std::cout<<node->elem<<std::endl;int rootIndex = 0;for(;rootIndex < length; rootIndex++)//a variation of the loop
    {if(inorder[rootIndex] ==  *(aftorder+length-1))break;}node->left = BinaryTreeFromOrderings(inorder, aftorder , rootIndex);node->right = BinaryTreeFromOrderings(inorder + rootIndex + 1, aftorder + rootIndex , length - (rootIndex + 1));return node;
}int main(int argc, char** argv)
{char* af="AEFDHZMG";    char* in="ADEFGHMZ"; BinaryTreeFromOrderings(in, af, 8); printf("\n");return 0;
}
复制代码

输出结果:GDAFEMHZ


http://www.cnblogs.com/fzhe/archive/2013/01/07/2849040.html

这篇关于二叉树前序、中序、后序遍历相互求法 (原理,程序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/610138

相关文章

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法

《golang获取当前时间、时间戳和时间字符串及它们之间的相互转换方法》:本文主要介绍golang获取当前时间、时间戳和时间字符串及它们之间的相互转换,本文通过实例代码给大家介绍的非常详细,感兴趣... 目录1、获取当前时间2、获取当前时间戳3、获取当前时间的字符串格式4、它们之间的相互转化上篇文章给大家介

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

如何用java对接微信小程序下单后的发货接口

《如何用java对接微信小程序下单后的发货接口》:本文主要介绍在微信小程序后台实现发货通知的步骤,包括获取Access_token、使用RestTemplate调用发货接口、处理AccessTok... 目录配置参数 调用代码获取Access_token调用发货的接口类注意点总结配置参数 首先需要获取Ac