实战 | 某电商平台类目SKU数获取与可视化展示

2024-01-15 10:52

本文主要是介绍实战 | 某电商平台类目SKU数获取与可视化展示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、项目背景

最近又及年底,各类分析与规划报告纷至沓来,于是接到了公司平台类目商品增长方向的分析需求,其中需要结合外部电商平台做对比。我选择了国内某电商平台作为比较对象,通过获取最细层级前台类目下的SKU数以及结构占比,找出差异和可提升方向。

我的初步思路是:通过爬虫获取类目名称和链接——>获取SKU数——>可视化展现

由于这个项目并不需要对商品信息和用户评论信息进行获取,难度比较低,不会遇到强力的反爬机制,因此可以用来日常练手,尤其是对于我这种退出爬虫界很久的同学来说是比较友好,毕竟谁都不想去踩缝纫机对不对(手动狗头)。

二、实现过程

(一)三层级类目及链接获取

下图是该电商平台前台展示的三层级类目。

图片

1. 通过 f12 进入 JS 抓包

可以找到类目的真实地址:「https://dc.3.cn/category/get」,幸运的是返回的数据是 JSON 格式的,这样处理起来就简单了。

图片

图片

2. 通过观察返回的数据,可以发现一定的规律。

写爬虫就是这样,不断地找规律,仔细核对返回的数据,斗智斗勇的同时会觉得很有挑战乐趣,但也会觉得挺麻烦的。

图片

  • 分类信息格式

    • 格式1:

        • 1318-2628-12131|户外风衣||0

        • 对应URL: https://list.jd.com/list.html?cat=1318,2628,12131

        • 特点: 第一项为分类ID, 包含两个 - 

    • 格式2:

      • 652-654|摄影摄像||0

      • 对应的URL: https://channel.jd.com/652-654.html

      • 特点:第一项是频道ID, 包含一个 -

    • 格式3:

      • jiadian.jd.com|家用电器||0

      • 特点: 第一项分类URL,第二项分类名称

3. 代码实现

import requests
import json
import pandas as pd
import warnings
warnings.filterwarnings('ignore')headers={'Content-Type':'application/json','User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',}url = 'https://dc.3.cn/category/get'
res = requests.get(url,headers=headers)
# 把传递过来的信息GBK进行解码
res.encoding='GBK'
json_data=json.loads(res.text)
# 取出"data" 键中分类列表
categorys = json_data['data']def get_category_item(category_info):# 使用 `|` 分割类型信息字符串categorys =   category_info.split('|')# 类别的名称category_name = categorys[1]# 类别的URLcategory_url = categorys[0]# 获取 category_url 中 `-` 个数count = category_url.count('-')if category_url.count('xx.com') != 0:# 其他就是本身就是URL, 前面补一个协议头category_url = 'https://' + category_urlelif count == 1:# 如果包含一个 '-' 是二级分类的频道category_url = 'https://channel.xx.com/{}.html'.format(category_url)else:# 如果包含2个 '-' 是三级分类的列表# 1. 把 `-` 替换为 ','category_url = category_url.replace('-', ',')# 2. 生成具体列表的URLcategory_url = 'https://list.xx.com/list.html?cat={}'.format(category_url)return category_name, category_urlresult = pd.DataFrame()
df = dict()
# 遍历分类列表
for category in categorys:# 获取大分类,包含子分类; 注: 第一层的分类都在在0索引上;b_category = category['s'][0]# 获取大分类信息(分类URL,名称)b_category_info =  b_category['n']# 解析大分类信息, 获取大分类名称和URLdf['大分类名'], df['大分类链接'] = get_category_item(b_category_info)# 获取中分类列表m_category_s =  b_category['s']# 遍历第二层分类列表for m_category in m_category_s:# 获取中分类信息m_category_info = m_category['n']df['中分类名'], df['中分类链接'] = get_category_item(m_category_info)# 获取小分类列表s_category_s = m_category['s']# 遍历小分类分类列表for s_category in s_category_s:# 获取第三层分类名称s_category_info = s_category['n']# 获取三级分类信息df['小分类名'], df['小分类链接'] = get_category_item(s_category_info)print('{} 已爬取……'.format(df['小分类名']))table = pd.DataFrame.from_dict(df,orient='index').Tresult = pd.concat([result, table])
result.to_excel('./2. 输出类目表.xlsx',sheet_name='result',index=False)
print('爬取成功!!')

(二)小分类下SKU数获取

进入任一级页面,这个平台非常人性化,已经把大致的SKU数放在了页面上,只要通过 xpath 就能直接提取的到啦,轻松写意,直接放代码吧。

图片

图片

import requests
from lxml import etree
import pandas as pd
import time
from alive_progress import alive_bar
import warnings
warnings.filterwarnings('ignore')headers={'Content-Type':'application/json','User-Agent':'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36',}df = pd.read_excel('./2. 输出类目表.xlsx',sheet_name='result')
datas=[]
urls = df['小分类链接']
with alive_bar(len(urls)) as bar:   for url in urls:res = requests.get(url,headers=headers).textselector = etree.HTML(res)try:sku_count = selector.xpath('//*[@id="J_resCount"]/text()')[0]except IndexError:sku_count = '异常'data = {'url':url,'sku_count': sku_count.strip()}with open('SKU.txt','a') as f:f.write(str(data))datas.append(data)print(data)df_SKU = pd.DataFrame(datas)
df_result = pd.merge(df,df_SKU,left_on='小分类链接',right_on='url',how='inner')
df_result.to_excel('./4. 输出类目SKU原始数据.xlsx',sheet_name='result',index=False)
print('SKU数 爬取完成!!')

(三) 数据清洗

数据拼接完成后,需要对SKU数字段做一些处理。

  • 爬取后原始格式

    • 格式1:

      • 以“万”为结尾

      • 需要在原始数据上,去除“+”符号,乘以 10000

    • 格式2:

      • 小分类页面不是商品页,而是返回广告页,没有提供商品SKU数

      • 处理成 0

    • 格式3:

      • 正常数据

      • 需要在原始数据上,去除“+”符号

import pandas as pd
import xlwings as xw
import warnings
warnings.filterwarnings('ignore')df = pd.read_excel('./4. 输出类目SKU原始数据.xlsx',sheet_name='result')def transform(a,b):if a == '万':return float(b) * 10000elif a == '异常':return 0else:return float(b)df['基数'] = df['SKU数'].str.findall('[0-9.]').str.join('')
df['单位'] = df['SKU数'].str.findall('[\u4e00-\u9fa5 ;()]').str.join('')
df['转换后SKU数'] = df.apply(lambda x :transform(x['单位'],x['基数']), axis=1)
df = df[['大分类名', '大分类链接', '中分类名', '中分类链接', '小分类名', '小分类链接','转换后SKU数']]
df.to_excel('./6. 输出类目SKU转换后数据.xlsx',sheet_name='result',index=False)app = xw.App(visible=False,add_book=False)
workbook = app.books.open('./6. 输出类目SKU转换后数据.xlsx')for i in workbook.sheets:value = i.range('A1').expand() # 选择要调整的区域value.rows.autofit() # 调整列宽字符宽度value.columns.autofit()  # 调整行高字符宽度value.api.Font.Name = '微软雅黑' # 设置字体value.api.Font.Size = 9 # 设置字号大小(磅数)value.api.VerticalAlignment = xw.constants.VAlign.xlVAlignCenter # 设置垂直居中value.api.HorizontalAlignment = xw.constants.HAlign.xlHAlignCenter # 设置水平居中for cell in value:for b in range(7,12):cell.api.Borders(b).LineStyle = 1 # 设置单元格边框线型cell.api.Borders(b).Weight = 2 # 设置单元格边框粗细value = i.range('A1').expand('right')  # 选择要调整的区域value.api.Font.Size = 10value.api.Font.Bold = True  # 设置为粗体
workbook.save()
workbook.close()
app.quit()print('数据清洗完成!!')

(四)可视化展现

可视化展示的环节,我这次没有选用之前一直使用的 pyecharts,而是使用了 plotly。

主要原因是 plotly 对于 pandas 的支持非常好,它的高级封装函数的写法非常简洁,使用起来方便,而且也能够支持交互和自定义颜色,集美观与实用于一身,应该会成为我今后的主力可视化工具。

1. 将某平台和我司的类目SKU数占比进行对比

图片

import plotly.io as pio
import plotly.express as px
import plotly.graph_objects as go
import plotly.figure_factory as ff
import pandas as pd
import numpy as npdf1 = pd.read_excel('./6. 输出类目SKU转换后数据.xlsx',sheet_name='result')df_xx = df1.groupby('映射我司事业部')['转换后SKU数'].sum().reset_index().sort_values(by='转换后SKU数',ascending=False)
df_xx['SKU数占比%'] = ((df_xx['转换后SKU数'] / df_xx['转换后SKU数'].sum()) * 100).round(1) 
df_xx['公司'] = 'xx'
df_xx = df_JD[['公司','映射我司事业部','转换后SKU数','SKU数占比%']]
df_xx.loc[len(df_xx.index)] = ['xx', '商城商品事业部', 0, 0.0]df2 = pd.read_excel('./【资料】2022年购物公司商品0101-1013.xlsx',sheet_name='Sheet1')
df2 = df2[df2['订购数量']>0]df_yy = df2.groupby('事业部')['商品编号'].count().reset_index().sort_values(by='商品编号',ascending=False)
df_yy['SKU数占比%'] = ((df_yy['商品编号'] / df_yy['商品编号'].sum()) * 100).round(1) 
df_yy.rename(columns={'事业部':'映射我司事业部', '商品编号':'转换后SKU数'}, inplace = True)
df_yy['公司'] = 'yy'
df_yy = df_yy[['公司','映射我司事业部','转换后SKU数','SKU数占比%']]
df_yy.loc[len(df_yy.index)] = ['yy', 0, 0, 0.0]
df_yy.loc[len(df_yy.index)] = ['yy', '团购', 0, 0.0]df_concat = pd.concat([df_xx,df_yy])# SKU类目占比对比(柱状图)
fig = px.bar(df_concat, x='映射我司事业部', y='SKU数占比%',barmode='group',color='公司',text='SKU数占比%')
fig.update_layout(title='事业部SKU占比对比(%)')
fig.update_traces(textposition='outside',textfont_size=16,textfont_color=['#FC5531'])
pio.write_html(fig,'事业部SKU占比对比.html')
pio.write_image(fig,'事业部SKU占比对比.png','png',width=1400,height=800)

2. 某平台类目SKU数量结构

图片

# 树状图
df1['整体'] = '整体'
fig1 = px.treemap(df1, path=['整体', '大分类名', '中分类名'], values='转换后SKU数', title='类目SKU占比树状图',# color='转换后SKU数',# color_continuous_scale='RdBu',# color_continuous_midpoint=df1['转换后SKU数'].mean())
fig1.update_traces(textinfo='label+value',textfont = dict(size = 20))                                                                                 
pio.write_html(fig1,'类目SKU占比树状图.html')
pio.write_image(fig1,'类目SKU占比树状图.png','png',width=1400,height=800)

3. 某平台

图片

#  热力图
bins = [0,1,20000,50000,100000,150000,200000,300000,400000,500000,99999999999]
groups1 = ['0','2万','5万','10万','15万','20万','30万','40万','50万','50万以上']
groups2 = [.1,.2,.3,.4,.5,.6,.7,.8,.9,1.0]
df1['SKU数级别'] = pd.cut(df1['转换后SKU数'],bins,labels=groups1)
df1['SKU数级别'] = df1['SKU数级别'].fillna('0')data = df1.groupby(['大分类名','SKU数级别'])['转换后SKU数'].sum().reset_index()
data = pd.pivot(data,values='转换后SKU数',index='大分类名',columns='SKU数级别')data2 = data.apply(lambda x:pd.cut(x,bins,labels=groups2))
data2 = data2.fillna(.1)data = data.applymap(lambda x:str(round(x / 10000,2)) + ' 万')data.drop(index='众筹',columns='0',inplace=True)
data2.drop(index='众筹',columns='0',inplace=True)x = list(data.columns)
y = list(data.index)
z = data2.values.tolist()
z_text = data.fillna('').values.tolist()#  自定义色卡
# colorscale = [[0.0,'rgb(0,153,102)'],
#               [.1,'rgb(211,207,99)'],
#               [.3,'rgb(255,153,51)'],
#               [.4,'rgb(204,97,51)'],
#               [.5,'rgb(102,0,153)'],
#               [1.0,'rgb(126,0,35)']]fig2 = ff.create_annotated_heatmap(z,x=x,y=y,annotation_text=z_text,# colorscale=colorscale)
fig2.update_layout(title='类目SKU占比热力图')
fig2.update_xaxes(side='top')
pio.write_html(fig2,'类目SKU占比热力图.html')
pio.write_image(fig2,'类目SKU占比热力图.png','png',width=1400,height=800)

三、可提升方向

以上只是实际工作项目中的一部分,接下来还要对自己公司的数据进行分析,不方便给出更详细的说明,但是本文使用的方法是相通的,不管是对自己公司还是外部平台,都可以按照类似的步骤进行处理、分析与展示。

进行项目的过程中还有一些值得提升的地方,

  • plotly.express 尚未支持多子图的呈现,目前只能使用 plotly.graph_objs 来实现,代码较为繁琐

  • plotly 的很多配置项细节需要梳理和掌握,毕竟才真正接触这个库两三天的时间,来日方长

  • 遇到反爬之后,反反爬的成本很高,影响效率,在不花钱的情况下,现在爬虫的 ROI 已经很低,不太值得去做,以我现在的水平有越来越多的网站过不了

  • 遇到海量不同口径的数据(比如类目),有什么样的方法能够快速对齐统一,目前还没有头绪,靠人工肯定不现实,数据清洗是真的让人头大啊

数海随记

喜欢作者

这篇关于实战 | 某电商平台类目SKU数获取与可视化展示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/608646

相关文章

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

C#实现WinForm控件焦点的获取与失去

《C#实现WinForm控件焦点的获取与失去》在一个数据输入表单中,当用户从一个文本框切换到另一个文本框时,需要准确地判断焦点的转移,以便进行数据验证、提示信息显示等操作,本文将探讨Winform控件... 目录前言获取焦点改变TabIndex属性值调用Focus方法失去焦点总结最后前言在一个数据输入表单

通过C#获取PDF中指定文本或所有文本的字体信息

《通过C#获取PDF中指定文本或所有文本的字体信息》在设计和出版行业中,字体的选择和使用对最终作品的质量有着重要影响,然而,有时我们可能会遇到包含未知字体的PDF文件,这使得我们无法准确地复制或修改文... 目录引言C# 获取PDF中指定文本的字体信息C# 获取PDF文档中用到的所有字体信息引言在设计和出

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

python中os.stat().st_size、os.path.getsize()获取文件大小

《python中os.stat().st_size、os.path.getsize()获取文件大小》本文介绍了使用os.stat()和os.path.getsize()函数获取文件大小,文中通过示例代... 目录一、os.stat().st_size二、os.path.getsize()三、函数封装一、os

Python中的可视化设计与UI界面实现

《Python中的可视化设计与UI界面实现》本文介绍了如何使用Python创建用户界面(UI),包括使用Tkinter、PyQt、Kivy等库进行基本窗口、动态图表和动画效果的实现,通过示例代码,展示... 目录从像素到界面:python带你玩转UI设计示例:使用Tkinter创建一个简单的窗口绘图魔法:用

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min