【并发】共享模型之管程

2024-01-14 17:44
文章标签 模型 并发 共享 管程

本文主要是介绍【并发】共享模型之管程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

共享模型之管程

共享问题

package 并发;public class Test1 {static int a=0;public static void main(String[] args) throws InterruptedException {Thread t1=new Thread(new Runnable() {@Overridepublic void run() {for(int i=0;i<5000;i++){a++;}}});Thread t2=new Thread(new Runnable() {@Overridepublic void run() {for(int i=0;i<5000;i++){a--;}}});t1.start();;t2.start();t1.join();;t2.join();System.out.println("a="+a);}}

与预期的结果不同

问题分析

以上的结果可能是正数,负数,0为什么呢? 因为Java中对静态变量的自增,自减并不是原子操作,要彻底理解,必须从字节码进行分析。

例如:对于i++而言,实际会产生如下的JVM字节码指令:

getstatic i //获取静态变量 iconst_1 //准备常量1 iadd //自增 putstatic i //将修改后的值存入静态变量i

而JAVA 的内存模型如下,完成静态变量的自增,自减需要在主存和工作内存中进行数据交换:

如果是单线程,上面的代码是顺序执行(不会交错) 没有问题:

临界区

  • 一个程序运行多个线程本身是没有问题的。
  • 问题出在多个线程访问共享资源。
    • 多个线程读取共享资源其实也没有问题
    • 在多个线程对共享资源读写操作时发生指令交集,就会出现问题。
  • 一般代码块如果存在对共享资源的多线程读写操作。那么这段代码称为临界区。
Thread t1=new Thread(new Runnable() {@Overridepublic void run() {//临界区a++;}
});
Thread t2=new Thread(new Runnable() {@Overridepublic void run() {//临界区a--;}
});

解决方案

  • 阻塞式的解决方案:synchronized \ Lock
  • 非阻塞式的解决方案:原子变量

本次课程使用的解决方案式:synchronzied ,来解决上述问题,俗称【对象锁】。

它采用互斥的方式让同一时刻至多只有一个线程能持有【对象锁】,其他想获取这个对象锁就会被阻塞住,这样就能保证拥有锁的线程可以安全的执行临界区内的代码,不用担心上下文的切换。

注意:

虽然java中的互斥和同步都是可以采用synchronized来完成,但还是有区别的。

  • 互斥是保证临界区的竟态条件发生,同一时刻只有一个线程执行临界区的代码。
  • 同步是由于线程执行的先后,顺序不同,需要一个线程等待其他线程运行到这个点,

synchronzied

语法
synchronized(){  临界区
}
解决
package 并发;import java.util.Date;public class Test1 {static Integer a=0;static Object flag=new Object();public static void main(String[] args) throws InterruptedException {Thread t1=new Thread(new Runnable() {@Overridepublic void run() {for(int i=0;i<5000;i++){//加锁synchronized (flag){a++;}}}});Thread t2=new Thread(new Runnable() {@Overridepublic void run() {for(int i=0;i<5000;i++){//加锁synchronized (flag){a--;}}}});t1.start();;t2.start();t1.join();;t2.join();System.out.println("a="+a);}}
向对象思想改进面
package 并发;import java.util.Date;class Test1 {static Integer a=0;static   Room room=new Room();public static void main(String[] args) throws InterruptedException {Thread t1=new Thread(new Runnable() {@Overridepublic void run() {for(int i=0;i<5000;i++){room.increase();;}}});Thread t2=new Thread(new Runnable() {@Overridepublic void run() {for(int i=0;i<5000;i++){room.decrease();;}}});t1.start();;t2.start();t1.join();;t2.join();System.out.println("结果是"+room.count);}}class Room {public static int count=0;static Object flag=new Object();public void increase(){synchronized (flag){count++;}}public void decrease(){synchronized (flag){count--;}}}

方法上的synchronized

语法

synchronized加在普通方法上

class Room {public static int count=0;static Object flag=new Object();public synchronized void increase(){count++;}//等价于 锁住的是自己的对象public void increase(){synchronized(this){count++;}}}

synchronized加在静态方法上

class Room {public static int count=0;static Object flag=new Object();public synchronized  static void increase(){count++;}//等价于 锁住的是自己的类对象public static void increase(){synchronized(Room.class){count++;}}}

不加synchronized方法无法保证原子性

线程安全分析

成员变量和静态变量是否是安全的?

  • 如果他们没有共享,则线程安全
  • 如果他们被共享了,根据他们的线程是否能改变,又分为两种:

                只有读操作,则线程安全。

                如果有读写操作,则这段代码是临界区,需要考虑线程安全。

局部变量是否是线程安全的?

  • 局部变量是线程安全的
  • 但局部变量引用的对象未必。(堆中的变量就可能被共享)
    • 如果该对象没有逃离方法的作用范围,则是线程安全的。
    • 如果该对象逃离方法的作用范围,则需要考虑线程安全
局部变量线程安全分析

public static void test1(){ int i=10; i++; }

每个线程调用test1()方法时局部变量i,会在每个线程的栈帧内存中被创建多份,因此不存在共享

如图:

局部变量的引用稍有不同

先看一个成员变量的例子

class ThreadUnsafe { ArrayList list = new ArrayList<>(); public void method1(int loopNumber) { for (int i = 0; i < loopNumber; i++) { // { 临界区, 会产生竞态条件 method2(); method3();执行其中一种情况是,如果线程2 还未 add,线程1 remove 就会报错:Exception in thread "Thread1" java.lang.IndexOutOfBoundsException: Index: 0, Size: 0 at java.util.ArrayList.rangeCheck(ArrayList.java:657) at java.util.ArrayList.remove(ArrayList.java:496) at cn.itcast.n6.ThreadUnsafe.method3(TestThreadSafe.java:35) at cn.itcast.n6.ThreadUnsafe.method1(TestThreadSafe.java:26) at cn.itcast.n6.TestThreadSafe.lambda$main$0(TestThreadSafe.java:14) at java.lang.Thread.run(Thread.java:748)分析:无论哪个线程中的 method2 引用的都是同一个对象中的 list 成员变量method3 与 method2 分析相同 // } 临界区 } } private void method2() { list.add("1"); } private void method3() { list.remove(0); }}

执行

static final int THREAD_NUMBER = 2;
static final int LOOP_NUMBER = 200;
public static void main(String[] args) { ThreadUnsafe test = new ThreadUnsafe(); for (int i = 0; i < THREAD_NUMBER; i++) { new Thread(() -> { test.method1(LOOP_NUMBER); }, "Thread" + i).start(); }}

其中一种情况是,如果线程2 还未 add,线程1 remove 就会报错

Exception in thread "Thread1" java.lang.IndexOutOfBoundsException: Index: 0, Size: 0 at java.util.ArrayList.rangeCheck(ArrayList.java:657) at java.util.ArrayList.remove(ArrayList.java:496) at cn.itcast.n6.ThreadUnsafe.method3(TestThreadSafe.java:35) at cn.itcast.n6.ThreadUnsafe.method1(TestThreadSafe.java:26) at cn.itcast.n6.TestThreadSafe.lambda$main$0(TestThreadSafe.java:14) at java.lang.Thread.run(Thread.java:748)

分析:

无论哪个线程中的 method2 引用的都是同一个对象中的 list 成员变量

method3 与 method2 分析相同

这篇关于【并发】共享模型之管程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/605993

相关文章

Linux samba共享慢的原因及解决方案

《Linuxsamba共享慢的原因及解决方案》:本文主要介绍Linuxsamba共享慢的原因及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux samba共享慢原因及解决问题表现原因解决办法总结Linandroidux samba共享慢原因及解决

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python异步编程中asyncio.gather的并发控制详解

《Python异步编程中asyncio.gather的并发控制详解》在Python异步编程生态中,asyncio.gather是并发任务调度的核心工具,本文将通过实际场景和代码示例,展示如何结合信号量... 目录一、asyncio.gather的原始行为解析二、信号量控制法:给并发装上"节流阀"三、进阶控制

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Nginx实现高并发的项目实践

《Nginx实现高并发的项目实践》本文主要介绍了Nginx实现高并发的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录使用最新稳定版本的Nginx合理配置工作进程(workers)配置工作进程连接数(worker_co

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll