本文主要是介绍【天池——街景字符识别】 Task5 模型集成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 集成学习方法
- 深度学习中的集成学习
- Dropout
- TTA
- Snapshot
- 结果后处理
- 小节
集成学习方法
在机器学习中的集成学习可以在一定程度上提高预测精度,常见的集成学习方法有Stacking、Bagging和Boosting,同时这些集成学习方法与具体验证集划分联系紧密。
由于深度学习模型一般需要较长的训练周期,如果硬件设备不允许建议选取留出法,如果需要追求精度可以使用交叉验证的方法。
下面假设构建了10折交叉验证,训练得到10个CNN模型。
那么在10个CNN模型可以使用如下方式进行集成:
- 对预测的结果的概率值进行平均,然后解码为具体字符;
- 对预测的字符进行投票,得到最终字符。
深度学习中的集成学习
Dropout
Dropout可以作为训练深度神经网络的一种技巧。在每个训练批次中,通过随机让一部分的节点停止工作。同时在预测的过程中让所有的节点都其作用。
Dropout经常出现在在先有的CNN网络中,可以有效的缓解模型过拟合的情况,也可以在预测时增加模型的精度。
加入Dropout后的网络结构如下:
# 定义模型
class SVHN_Model1(nn.Module):def __init__(self):super(SVHN_Model1, self).__init__()# CNN提取特征模块self.cnn = nn.Sequential(nn.Conv2d(3, 16, kernel_size=(3, 3), stride=(2, 2)),nn.ReLU(),nn.Dropout(0.25),nn.MaxPool2d(2),nn.Conv2d(16, 32, kernel_size=(3, 3), stride=(2, 2)),nn.ReLU(), nn.Dropout(0.25),nn.MaxPool2d(2),)# self.fc1 = nn.Linear(32*3*7, 11)self.fc2 = nn.Linear(32*3*7, 11)self.fc3 = nn.Linear(32*3*7, 11)self.fc4 = nn.Linear(32*3*7, 11)self.fc5 = nn.Linear(32*3*7, 11)self.fc6 = nn.Linear(32*3*7, 11)def forward(self, img): feat = self.cnn(img)feat = feat.view(feat.shape[0], -1)c1 = self.fc1(feat)c2 = self.fc2(feat)c3 = self.fc3(feat)c4 = self.fc4(feat)c5 = self.fc5(feat)c6 = self.fc6(feat)return c1, c2, c3, c4, c5, c6
TTA
测试集数据扩增(Test Time Augmentation,简称TTA)也是常用的集成学习技巧,数据扩增不仅可以在训练时候用,而且可以同样在预测时候进行数据扩增,对同一个样本预测三次,然后对三次结果进行平均。
def predict(test_loader, model, tta=10):model.eval()test_pred_tta = None# TTA 次数for _ in range(tta):test_pred = []with torch.no_grad():for i, (input, target) in enumerate(test_loader):c0, c1, c2, c3, c4, c5 = model(data[0])output = np.concatenate([c0.data.numpy(), c1.data.numpy(),c2.data.numpy(), c3.data.numpy(),c4.data.numpy(), c5.data.numpy()], axis=1)test_pred.append(output)test_pred = np.vstack(test_pred)if test_pred_tta is None:test_pred_tta = test_predelse:test_pred_tta += test_predreturn test_pred_tta
Snapshot
本章的开头已经提到,假设我们训练了10个CNN则可以将多个模型的预测结果进行平均。但是加入只训练了一个CNN模型,如何做模型集成呢?
在论文Snapshot Ensembles中,作者提出使用cyclical learning rate进行训练模型,并保存精度比较好的一些checkopint,最后将多个checkpoint进行模型集成。
由于在cyclical learning rate中学习率的变化有周期性变大和减少的行为,因此CNN模型很有可能在跳出局部最优进入另一个局部最优。在Snapshot论文中作者通过使用表明,此种方法可以在一定程度上提高模型精度,但需要更长的训练时间。
结果后处理
在不同的任务中可能会有不同的解决方案,不同思路的模型不仅可以互相借鉴,同时也可以修正最终的预测结果。
在本次赛题中,可以从以下几个思路对预测结果进行后处理:
- 统计图片中每个位置字符出现的频率,使用规则修正结果;
- 单独训练一个字符长度预测模型,用来预测图片中字符个数,并修正结果。
小节
以下几点需要注意:
- 集成学习只能在一定程度上提高精度,并需要耗费较大的训练时间,因此建议先使用提高单个模型的精度,再考虑集成学习过程;
- 具体的集成学习方法需要与验证集划分方法结合,Dropout和TTA在所有场景有可以起作用。
这篇关于【天池——街景字符识别】 Task5 模型集成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!