人工智能(pytorch)搭建模型16-基于LSTM+CNN模型的高血压预测的应用

2024-01-14 00:50

本文主要是介绍人工智能(pytorch)搭建模型16-基于LSTM+CNN模型的高血压预测的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我是微学AI,今天给大家介绍一下人工智能(pytorch)搭建模型16-基于LSTM+CNN模型的高血压预测的应用,LSTM+CNN模型搭建与训练,本项目将利用pytorch搭建LSTM+CNN模型,涉及项目:高血压预测,高血压是一种常见的性疾病,早期预测和干预对于防止其发展至严重疾病至关重要。
在这里插入图片描述

目录

  1. 项目背景
  2. LSTM-CNN模型原理
  3. 数据样例
  4. 数据加载
  5. 模型搭建
  6. 模型训练
  7. 模型预测
  8. 总结

1. 项目背景

高血压是全球面临的一项紧迫的公共卫生挑战,它被认为是全球疾病预防负担最重的因素之一,同时也是心血管疾病的主要风险因素。及时、定期地监测血压对于早期诊断和预防心血管疾病至关重要。人体的血压通常会随着时间的推移而波动,并受到多种因素的影响,如压力、情绪、饮食、运动和药物使用等。因此,进行持续监测而非仅在特定时间点监测血压,对于早期发现和治疗高血压具有重要意义。本项目采用深度学习中的LSTM-CNN模型,通过学习患者的历史健康数据,进行高血压的预测。

2. LSTM-CNN模型原理

LSTM-CNN模型是一种混合模型,结合了长短期记忆网络(LSTM)和卷积神经网络(CNN)的优点。LSTM能够处理时序数据,学习长期依赖关系;而CNN则能够从局部特征中提取有用信息。在高血压预测中,LSTM用于学习患者的历史健康数据中的时间依赖关系,而CNN则用于从这些数据中提取有用的特征。

LSTM-CNN模型是一种结合了长短期记忆(Long Short-Term Memory,LSTM)和卷积神经网络(Convolutional Neural Network,CNN)的混合模型。其数学原理可以通过以下方式表示:

首先,我们定义输入序列为 X = { x 1 , x 2 , . . . , x T } \mathbf{X} = \{x_1, x_2, ..., x_T\} X={x1,x2,...,xT},其中 T T T 是序列的长度。在LSTM中,每个时间步的隐藏状态由记忆单元(cell) c t \mathbf{c}_t ct 和输出状态 h t \mathbf{h}_t ht 组成。

LSTM层的计算过程如下:

  1. 输入门(Input Gate):通过计算输入门向量 i t \mathbf{i}_t it 来控制当前时间步输入的影响。计算方式如下:
    i t = σ ( W i x t + U i h t − 1 + b i ) \mathbf{i}_t = \sigma(\mathbf{W}_i\mathbf{x}_t + \mathbf{U}_i\mathbf{h}_{t-1} + \mathbf{b}_i) it=σ(Wixt+Uiht1+bi)
    其中, W i \mathbf{W}_i Wi U i \mathbf{U}_i Ui b i \mathbf{b}_i bi 是可学习的参数, σ \sigma σ 是sigmoid函数。

  2. 遗忘门(Forget Gate):通过计算遗忘门向量 f t \mathbf{f}_t ft 来控制之前记忆的保留程度。计算方式如下:
    f t = σ ( W f x t + U f h t − 1 + b f ) \mathbf{f}_t = \sigma(\mathbf{W}_f\mathbf{x}_t + \mathbf{U}_f\mathbf{h}_{t-1} + \mathbf{b}_f) ft=σ(Wfxt+Ufht1+bf)
    其中, W f \mathbf{W}_f Wf U f \mathbf{U}_f Uf b f \mathbf{b}_f bf 是可学习的参数。

  3. 记忆更新(Memory Update):通过计算新的记忆单元 c t \mathbf{c}_t ct 来更新记忆。计算方式如下:
    c t = f t ⊙ c t − 1 + i t ⊙ tanh ⁡ ( W c x t + U c h t − 1 + b c ) \mathbf{c}_t = \mathbf{f}_t \odot \mathbf{c}_{t-1} + \mathbf{i}_t \odot \tanh(\mathbf{W}_c\mathbf{x}_t + \mathbf{U}_c\mathbf{h}_{t-1} + \mathbf{b}_c) ct=ftct1+ittanh(Wcxt+Ucht1+bc)
    其中, W c \mathbf{W}_c Wc U c \mathbf{U}_c Uc b c \mathbf{b}_c bc 是可学习的参数, ⊙ \odot 表示逐元素相乘。

  4. 输出门(Output Gate):通过计算输出门向量 o t \mathbf{o}_t ot 来控制当前时间步输出的影响。计算方式如下:
    o t = σ ( W o x t + U o h t − 1 + b o ) \mathbf{o}_t = \sigma(\mathbf{W}_o\mathbf{x}_t + \mathbf{U}_o\mathbf{h}_{t-1} + \mathbf{b}_o) ot=σ(Woxt+Uoht1+bo)
    其中, W o \mathbf{W}_o Wo U o \mathbf{U}_o Uo b o \mathbf{b}_o bo 是可学习的参数。

最后,LSTM的输出状态 h t \mathbf{h}_t ht 和记忆单元 c t \mathbf{c}_t ct 可以通过以下方式计算:
h t = o t ⊙ tanh ⁡ ( c t ) \mathbf{h}_t = \mathbf{o}_t \odot \tanh(\mathbf{c}_t) ht=ottanh(ct)

接下来,将LSTM层的输出状态作为CNN的输入,进行卷积和池化等操作,然后通过全连接层进行最终的预测或分类。

LSTM层结果输入CNN的过程:

将LSTM层的输出状态作为CNN的输入时,通常会对输出状态进行重塑(reshape),以适应CNN的输入格式要求。具体的处理方式如下所示:

  1. 首先,假设LSTM层的输出状态形状为 ( B , T , H ) (B, T, H) (B,T,H),其中 B B B 表示批次大小(batch size), T T T 表示序列长度, H H H 表示隐藏状态维度。

  2. 接着,将输出状态进行重塑,使其形状变为 ( B × T , H ) (B \times T, H) (B×T,H)。这一步操作可以将 LSTM 输出的所有时间步连接起来,得到一个二维的矩阵,其中每行表示一个时间步的隐藏状态。

  3. 然后,将重塑后的输出状态作为输入传递给CNN模型。

  4. 在CNN模型中,通常会使用卷积层进行特征提取。卷积层通过定义卷积核的数目、大小和步长等参数来提取局部特征。

  5. 接下来,常见的操作是使用池化层对卷积层的输出进行下采样,以减少特征的维度和数量。池化可以通过取最大值(最大池化)或计算平均值(平均池化)等方式实现。

  6. 最后,经过池化层之后,可以将得到的特征向量输入到全连接层进行最终的预测或分类等任务。
    在这里插入图片描述

3. 数据样例

以下是一些中文时序高血压csv数据样例:

id,年龄,性别,体重,身高,收缩压,舒张压,心率,血糖,血脂,是否高血压
1,45,男,75,175,120,80,70,5.6,1.2,否
2,50,男,80,180,130,85,72,6.0,1.3,是
3,55,女,65,165,110,70,68,52,1.1,否
4,35,女,60,160,110,70,75,4.8,1.0,否
5,42,男,78,173,125,82,68,5.2,1.1,是
6,58,男,85,177,140,90,80,6.5,1.4,是
7,47,女,62,165,115,75,72,5.3,1.2,否
8,52,男,79,179,128,84,70,5.9,1.3,是
9,43,女,66,162,112,73,70,5.5,1.1,否
10,50,男,83,176,125,82,75,6.2,1.2,是
11,37,女,64,163,110,70,68,5.0,1.0,否
12,49,男,76,178,130,85,72,5.8,1.2,是
13,57,男,88,183,145,92,80,6.8,1.5,是
14,41,女,63,164,112,73,70,5.4,1.1,否
15,55,男,82,175,127,83,75,6.1,1.3,是
16,38,女,61,158,108,68,67,4.9,1.0,否
17,53,男,80,181,132,87,74,6.0,1.4,是
18,46,女,67,167,114,75,72,5.1,1.2,否
19,48,男,77,180,128,84,70,5.7,1.2,是
20,60,男,90,185,150,95,78,7.0,1.6,是
21,39,女,59,156,106,66,65,4.7,0.9,否
22,54,男,81,178,130,85,72,6.0,1.3,是
23,44,女,68,168,115,76,73,5.2,1.1,否
...

4. 数据加载

我们使用pandas库来加载csv数据:

import pandas as pd# 加载数据
data = pd.read_csv('hypertension.csv')# 数据预处理
data['性别'] = data['性别'].map({'男': 0, '女': 1})
data['是否高血压'] = data['是否高血压'].map({'否': 0, '是': 1})# 分割训练集和测试集
train_data = data.sample(frac=0.8, random_state=0)
test_data = data.drop(train_data.index)

5. 模型搭建

我们使用PyTorch来搭建LSTM-CNN模型:

import torch
import torch.nn as nnclass LSTM_CNN(nn.Module):def __init__(self):super(LSTM_CNN, self).__init__()self.lstm = nn.LSTM(input_size=10, hidden_size=64, num_layers=2, batch_first=True)self.conv1 = nn.Conv1d(in_channels=64, out_channels=128, kernel_size=1)self.fc = nn.Linear(128, 2)def forward(self, x):x,_ = self.lstm(x)x = x.transpose(1, 0)x = self.conv1(x)x = x.transpose(1, 0)x = x.view(x.size(0), -1)x = self.fc(x)return x

6. 模型训练

我们使用Adam优化器和交叉熵损失函数进行模型训练:

# 模型训练
model = LSTM_CNN()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()for epoch in range(100):inputs = torch.tensor(train_data.drop('是否高血压', axis=1).values).float()labels = torch.tensor(train_data['是否高血压'].values).long()outputs = model(inputs)loss = criterion(outputs, labels)optimizer.zero_grad()loss.backward()optimizer.step()print('Epoch [%d/100], Loss: %.4f' %(epoch+1, loss.item()))

运行结果:

Epoch [72/100], Loss: 0.0001
Epoch [73/100], Loss: 0.0001
Epoch [74/100], Loss: 0.0001
Epoch [75/100], Loss: 0.0001
Epoch [76/100], Loss: 0.0001
Epoch [77/100], Loss: 0.0001
Epoch [78/100], Loss: 0.0001
Epoch [79/100], Loss: 0.0001
Epoch [80/100], Loss: 0.0001
Epoch [81/100], Loss: 0.0001
Epoch [82/100], Loss: 0.0001
Epoch [83/100], Loss: 0.0001
Epoch [84/100], Loss: 0.0001
...

7. 模型预测

训练完成后,我们可以输入数据进行预测:

# 模型预测
inputs = torch.tensor(test_data.drop('是否高血压', axis=1).values).float()
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
print('Predicted: ', predicted)

运行结果:

[[  1.   45.    0.   75.  175.  120.   80.   70.    5.6   1.2][  4.   35.    1.   60.  160.  110.   70.   75.    4.8   1. ][ 13.   57.    0.   88.  183.  145.   92.   80.    6.8   1.5][ 16.   38.    1.   61.  158.  108.   68.   67.    4.9   1. ]]
Predicted:  tensor([0, 0, 1, 0])

8. 总结

本项目基于LSTM-CNN模型,通过学习患者的历史健康数据,实现了高血压的预测。这种方法具有较高的预测准确性,对于高血压的早期预测和干预具有重要意义。

LSTM-CNN模型的几个主要的应用领域:

文本分类:LSTM-CNN模型可以用于文本分类任务,例如情感分析、垃圾邮件过滤、新闻分类等。LSTM层能够捕捉序列中长距离依赖关系,而CNN层则能提取局部特征,两者结合可以更好地表示文本信息。

命名实体识别(Named Entity Recognition,NER):LSTM-CNN模型在NER任务中表现出色。LSTM层可以学习上下文信息和实体之间的依赖关系,而CNN层可以捕捉实体的局部特征,从而提高命名实体的识别准确率。

机器翻译:LSTM-CNN模型可以应用于机器翻译任务,将一种语言的文本转换为另一种语言。LSTM层可以处理输入序列和输出序列之间的长距离依赖关系,而CNN层可以提取局部特征,有助于改善翻译质量。

句子生成:LSTM-CNN模型可以用于生成句子、段落或对话等自然语言文本。通过训练模型,结合LSTM的生成能力和CNN的提取特征能力,可以生成具有上下文连贯性和语法正确性的文本。

这篇关于人工智能(pytorch)搭建模型16-基于LSTM+CNN模型的高血压预测的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/603384

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in

zoj3820(树的直径的应用)

题意:在一颗树上找两个点,使得所有点到选择与其更近的一个点的距离的最大值最小。 思路:如果是选择一个点的话,那么点就是直径的中点。现在考虑两个点的情况,先求树的直径,再把直径最中间的边去掉,再求剩下的两个子树中直径的中点。 代码如下: #include <stdio.h>#include <string.h>#include <algorithm>#include <map>#

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、