【Databend】行列转化:数据透视和逆透视

2024-01-13 16:52

本文主要是介绍【Databend】行列转化:数据透视和逆透视,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 数据准备
    • 数据透视
    • 数据逆透视
    • 总结

数据准备

学生学科得分等级测试数据如下:

drop table if exists fact_suject_data;
create table if not exists fact_suject_data
(student_id    int          null comment '编号',subject_level varchar null comment '科目等级',subject_level_json variant null comment '科目等级json数据'
);
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (12,'china e,english d,math e','{"china": "e","english": "d","math": "e"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (2,'china b,english b','{"china": "b","english": "b"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (3,'english a,math c','{"english": "a","math": "c"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (4,'china c,math a','{"china": "c","math": "a"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (5,'china d,english a,math c','{"china": "d","english": "a","math": "c"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (6,'china c,english a,math d','{"china": "c","english": "a","math": "d"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (7,'china a,english e,math b','{"china": "a","english": "e","math": "b"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (8,'china d,english e,math e','{"china": "d","english": "e","math": "e"}');
insert into fact_suject_data(student_id, subject_level,subject_level_json) values (9,'china c,english e,math c','{"china": "c","english": "e","math": "c"}');

利用上一篇 【Databend】行列转化:一行变多行和简单分列 文章一行变多行,得到如下效果数据:

select t1.student_id, t1.subject_level, split_part(unnest(split(t1.subject_level, ',')), ' ', 1) as subject, split_part(unnest(split(t1.subject_level, ',')), ' ', 2) as level1
from fact_suject_data as t1
order by t1.student_id;

在这里插入图片描述

数据透视

Databend 中的 pivot 功能可以轻松实现数据透视,使用语法如下:

select ...
from ...pivot ( <aggregate_function> ( <pivot_column> )for <value_column> in ( <pivot_value_1> [ , <pivot_value_2> ... ] ) )
[ ... ]

参数解释如下:

  • <aggregate_function>:用于组合来自 <pivot_column> 的分组值的聚合函数。
  • <pivot_column>:将使用指定的 <aggregate_function> 聚合的列。
  • <value_column>:其唯一值将成为数据透视结果集中的新列。
  • <pivot_value_N>:来自<value_column>的唯一值,将成为透视结果集中的新列。
with a as(select t1.student_id, t1.subject_level, split_part(unnest(split(t1.subject_level, ',')), ' ', 1) as subject, split_part(unnest(split(t1.subject_level, ',')), ' ', 2) as level1from fact_suject_data as t1order by t1.student_id)
select *
from a pivot (max(level1) for subject in ('china','math','english'));

在这里插入图片描述

数据逆透视

Databend 中 unpivot 功能通过将列转换为行,起到数据逆透视效果。它是一个关系运算符,接受两列(来自表或子查询)以及列列表,并为列表中指定的每列生成一行。使用语法如下:

select ...
from ...unpivot ( <value_column>for <name_column> in ( <column_list> ) )
[ ... ]

参数解释:

  • <value_column>:将存储从<column_list>中列出的列中提取的值的列。
  • <name_column>:将存储提取值的列名称的列。
  • <column_list>:要旋转的列列表,用逗号分隔。

利用数据透视的结果,使用 unpivot 恢复原样实现数据逆透视。

with a as(select t1.student_id, t1.subject_level, split_part(unnest(split(t1.subject_level, ',')), ' ', 1) as subject, split_part(unnest(split(t1.subject_level, ',')), ' ', 2) as level1from fact_suject_data as t1order by t1.student_id),b as(select *from a pivot (max(level1) for subject in ('china','math','english')) )
select *
from b unpivot (level2 for subject in (`china`,`math`,`english`));

在这里插入图片描述

总结

Databend 的 pivot 和 unpivot 功能更好地实现数据的透视和逆透视,并且非常易读和分析大量数据,相较于 Mysql 实现数据透视 (case …when…) 和逆透视 (union all) 来说更简单易读,方法不闲多主要是解决实际问题,学习了解更多方法和工具,在面对问题时也能更好的应对,赶紧实操起来,当遇到也能很自信地说“这题我会”。

参考资料:

  • Mysql 行列变换《你想要的都有》:https://blog.csdn.net/weixin_50357986/article/details/134161183
  • Databend Query Pivot:https://docs.databend.com/sql/sql-commands/query-syntax/query-pivot
  • Databend Query UnPivot:https://docs.databend.com/sql/sql-commands/query-syntax/query-unpivot
  • Databend 行列转化:一行变多行和简单分列:https://blog.csdn.net/weixin_50357986/article/details/135568736

这篇关于【Databend】行列转化:数据透视和逆透视的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/602149

相关文章

详谈redis跟数据库的数据同步问题

《详谈redis跟数据库的数据同步问题》文章讨论了在Redis和数据库数据一致性问题上的解决方案,主要比较了先更新Redis缓存再更新数据库和先更新数据库再更新Redis缓存两种方案,文章指出,删除R... 目录一、Redis 数据库数据一致性的解决方案1.1、更新Redis缓存、删除Redis缓存的区别二

Redis事务与数据持久化方式

《Redis事务与数据持久化方式》该文档主要介绍了Redis事务和持久化机制,事务通过将多个命令打包执行,而持久化则通过快照(RDB)和追加式文件(AOF)两种方式将内存数据保存到磁盘,以防止数据丢失... 目录一、Redis 事务1.1 事务本质1.2 数据库事务与redis事务1.2.1 数据库事务1.

Oracle Expdp按条件导出指定表数据的方法实例

《OracleExpdp按条件导出指定表数据的方法实例》:本文主要介绍Oracle的expdp数据泵方式导出特定机构和时间范围的数据,并通过parfile文件进行条件限制和配置,文中通过代码介绍... 目录1.场景描述 2.方案分析3.实验验证 3.1 parfile文件3.2 expdp命令导出4.总结

更改docker默认数据目录的方法步骤

《更改docker默认数据目录的方法步骤》本文主要介绍了更改docker默认数据目录的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1.查看docker是否存在并停止该服务2.挂载镜像并安装rsync便于备份3.取消挂载备份和迁

不删数据还能合并磁盘? 让电脑C盘D盘合并并保留数据的技巧

《不删数据还能合并磁盘?让电脑C盘D盘合并并保留数据的技巧》在Windows操作系统中,合并C盘和D盘是一个相对复杂的任务,尤其是当你不希望删除其中的数据时,幸运的是,有几种方法可以实现这一目标且在... 在电脑生产时,制造商常为C盘分配较小的磁盘空间,以确保软件在运行过程中不会出现磁盘空间不足的问题。但在

Java如何接收并解析HL7协议数据

《Java如何接收并解析HL7协议数据》文章主要介绍了HL7协议及其在医疗行业中的应用,详细描述了如何配置环境、接收和解析数据,以及与前端进行交互的实现方法,文章还分享了使用7Edit工具进行调试的经... 目录一、前言二、正文1、环境配置2、数据接收:HL7Monitor3、数据解析:HL7Busines

Mybatis拦截器如何实现数据权限过滤

《Mybatis拦截器如何实现数据权限过滤》本文介绍了MyBatis拦截器的使用,通过实现Interceptor接口对SQL进行处理,实现数据权限过滤功能,通过在本地线程变量中存储数据权限相关信息,并... 目录背景基础知识MyBATis 拦截器介绍代码实战总结背景现在的项目负责人去年年底离职,导致前期规

Redis KEYS查询大批量数据替代方案

《RedisKEYS查询大批量数据替代方案》在使用Redis时,KEYS命令虽然简单直接,但其全表扫描的特性在处理大规模数据时会导致性能问题,甚至可能阻塞Redis服务,本文将介绍SCAN命令、有序... 目录前言KEYS命令问题背景替代方案1.使用 SCAN 命令2. 使用有序集合(Sorted Set)

SpringBoot整合Canal+RabbitMQ监听数据变更详解

《SpringBoot整合Canal+RabbitMQ监听数据变更详解》在现代分布式系统中,实时获取数据库的变更信息是一个常见的需求,本文将介绍SpringBoot如何通过整合Canal和Rabbit... 目录需求步骤环境搭建整合SpringBoot与Canal实现客户端Canal整合RabbitMQSp

MyBatis框架实现一个简单的数据查询操作

《MyBatis框架实现一个简单的数据查询操作》本文介绍了MyBatis框架下进行数据查询操作的详细步骤,括创建实体类、编写SQL标签、配置Mapper、开启驼峰命名映射以及执行SQL语句等,感兴趣的... 基于在前面几章我们已经学习了对MyBATis进行环境配置,并利用SqlSessionFactory核