使用sys.dm_io_virtual_file_stats了解你的数据库IO

2024-01-13 16:18

本文主要是介绍使用sys.dm_io_virtual_file_stats了解你的数据库IO,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

因为sys.dm_io_virtual_file_stats 返回数据和日志文件的 I/O 统计信息,包括对文件发出的读取/写入次数以及总字节数,所以这个函数既可以看到IOPS也可以看到吞吐量,还可以计算出单个IO的大小。另外也可以看到IO的等待时间。能够帮助我们很好的了解数据库的IO状况。
配合Perfmon一起使用可以很快的找到IO瓶颈。
下面的文章来自微软的以为高级工程师:
http://blogs.msdn.com/b/dpless/archive/2010/12/01/leveraging-sys-dm-io-virtual-file-stats.aspx

One of the DMVs I try to utilize on any engagement where customers are complaining about disk issues is the sys.dm_io_virtual_file_stats DMV where you can look at the IO stalls for both reads and writes. The sys.dm_io_virtual_file_stats DMV will show an IO Stall when any wait occurs to access a physical data file. IO Stalls are recorded at the file level and you can also obtain the IO Stalls at the database level directly out of the DMV.

By getting this information it is very easy to ORDER BY io_stall_read_ms, io_stall_write_ms, or by io_stall which is an accumulation of reads and writes.

One addition step I have made in the script below is mapping to the sys.master_files catalog view and using the substring function to get the physical disk drive letter. You will now be able to see IO Stall activity at the file, database, and the drive letter. You can then use Reporting Services or simply use Excel to get a quick view of which of these is absorbing most of the IO Stall impact.

If you use Excel 2007, one of the interesting strategies is to use the Chart Advisor from Live Labs.
http://www.officelabs.com/projects/chartadvisor/Pages/default.aspx

This analysis can help make decisions around table partitioning and potentially file and index placement. Of course, this will all depend on the customer's SAN and other constraints.

Note: Mount points will make getting the drive letter less effective. If you are using mount points then just ignore the drive letter column.

SELECT a.io_stall, a.io_stall_read_ms, a.io_stall_write_ms, a.num_of_reads,
a.num_of_writes,
--a.sample_ms, a.num_of_bytes_read, a.num_of_bytes_written, a.io_stall_write_ms,
( ( a.size_on_disk_bytes / 1024 ) / 1024.0 ) AS size_on_disk_mb,
db_name(a.database_id) AS dbname,
b.name, a.file_id,
db_file_type = CASE
WHEN a.file_id = 2 THEN
'Log'
ELSE
'Data'
END,
UPPER(SUBSTRING(b.physical_name, 1, 2))AS disk_location
FROM sys.dm_io_virtual_file_stats (NULL, NULL) a
JOIN sys.master_files bON a.file_id = b.file_id
AND a.database_id = b.database_id
ORDER BY a.io_stall DESC

For those looking at disk issues, I have pasted the general guidance on the avg. reads/sec and avg. writes/sec values for perfmon. By using the script above and the guidance here on perfmon, you should be able to take the next steps in addressing disk performance issues with your customers.

I/O Bottlenecks

SQL Server performance depends heavily on the I/O subsystem. Unless your database fits into physical memory, SQL Server constantly brings database pages in and out of the buffer pool. This generates substantial I/O traffic. Similarly, the log records need to be flushed to the disk before a transaction can be declared committed. And finally, SQL Server uses TempDB for various purposes such as to store intermediate results, to sort, to keep row versions and so on. So a good I/O subsystem is critical to the performance of SQL Server.

Access to log files is sequential except when a transaction needs to be rolled back while access to data files, including TempDB, is randomly accessed. So as a general rule, you should have log files on a separate physical disk than data files for better performance. The focus of this paper is not how to configure your I/O devices but to describe ways to identify if you have I/O bottleneck. Once an I/O bottleneck is identified, you may need to reconfigure your I/O subsystem.
If you have a slow I/O subsystem, your users may experience performance problems such as slow response times, and tasks that abort due to timeouts.
You can use the following performance counters to identify I/O bottlenecks. Note, these AVG values tend to be skewed (to the low side) if you have an infrequent collection interval. For example, it is hard to tell the nature of an I/O spike with 60-second snapshots. Also, you should not rely on one counter to determine a bottleneck; look for multiple counters to cross check the validity of your findings.

  • Physical Disk Object: Avg. Disk Queue Length represents the average number of physical read and write requests that were queued on the selected physical disk during the sampling period. If your I/O system is overloaded, more read/write operations will be waiting. If your disk queue length frequently exceeds a value of 2 during peak usage of SQL Server, then you might have an I/O bottleneck.
  • Avg. Disk Sec/Read is the average time, in seconds, of a read of data from the disk. Any number:
    • Less than 10 ms - very good
    • Between 10 - 20 ms - okay
    • Between 20 - 50 ms - slow, needs attention
    • Greater than 50 ms - Serious I/O bottleneck
  • Avg. Disk Sec/Write is the average time, in seconds, of a write of data to the disk. Please refer to the guideline in the previous bullet.
  • Physical Disk: %Disk Time is the percentage of elapsed time that the selected disk drive was busy servicing read or write requests. A general guideline is that if this value is greater than 50 percent, it represents an I/O bottleneck.
  • Avg. Disk Reads/Sec is the rate of read operations on the disk. You need to make sure that this number is less than 85 percent of the disk capacity. The disk access time increases exponentially beyond 85 percent capacity.
  • Avg. Disk Writes/Sec is the rate of write operations on the disk. Make sure that this number is less than 85 percent of the disk capacity. The disk access time increases exponentially beyond 85 percent capacity.

When using above counters, you may need to adjust the values for RAID configurations using the following formulas.

  • Raid 0 -- I/Os per disk = (reads + writes) / number of disks
  • Raid 1 -- I/Os per disk = [reads + (2 * writes)] / 2
  • Raid 5 -- I/Os per disk = [reads + (4 * writes)] / number of disks
  • Raid 10 -- I/Os per disk = [reads + (2 * writes)] / number of disks

For example, you have a RAID-1 system with two physical disks with the following values of the counters.

  • Disk Reads/sec -  80
  • Disk Writes/sec - 70
  • Avg. Disk Queue Length - 5

In that case, you are encountering (80 + (2 * 70))/2 = 110 I/Os per disk and your disk queue length = 5/2 = 2.5 which indicates a border line I/O bottleneck."

另外可以利用下面的脚本定期IO信息做比对分析:

SET NOCOUNTON

DECLARE @IOStatsTABLE (
[database_id][smallint]NOT NULL,
[file_id][smallint]NOT NULL,
[num_of_reads][bigint]NOT NULL,
[num_of_bytes_read][bigint]NOT NULL,
[io_stall_read_ms][bigint]NOT NULL,
[num_of_writes][bigint]NOT NULL,
[num_of_bytes_written][bigint]NOT NULL,
[io_stall_write_ms][bigint]NOT NULL)
INSERTINTO @IOStats
SELECT database_id,

                vio
.file_id,
                num_of_reads
,
                num_of_bytes_read
,
                io_stall_read_ms
,
                num_of_writes
,
                num_of_bytes_written
,
                io_stall_write_ms
FROM sys.dm_io_virtual_file_stats(NULL,NULL) vio
DECLARE @StartTime datetime, @DurationInSecsint

SET @StartTime= GETDATE()
WAITFOR DELAY'00:05:00'
SET @DurationInSecs= DATEDIFF(ss, @startTime, GETDATE())
SELECT DB_NAME(vio.database_id)AS [Database],
        mf
.nameAS [Logical name],
        mf
.type_descAS [Type],
(vio.io_stall_read_ms- old.io_stall_read_ms)/ CASE(vio.num_of_reads-old.num_of_reads)WHEN 0THEN 1ELSE vio.num_of_reads-old.num_of_readsEND AS[Ave read speed(ms)],
        vio
.num_of_reads- old.num_of_readsAS [Noof reads over period],
CONVERT(DEC(14,2),(vio.num_of_reads- old.num_of_reads)/ (@DurationInSecs *1.00))AS [Noof reads/sec],
CONVERT(DEC(14,2),(vio.num_of_bytes_read- old.num_of_bytes_read)/ 1048576.0)AS [Tot MBread over period],
CONVERT(DEC(14,2),((vio.num_of_bytes_read- old.num_of_bytes_read)/ 1048576.0)/ @DurationInSecs)AS [Tot MBread/sec],
(vio.num_of_bytes_read- old.num_of_bytes_read)/ CASE(vio.num_of_reads-old.num_of_reads)WHEN 0THEN 1ELSE vio.num_of_reads-old.num_of_readsEND AS[Ave read size(bytes)],
(vio.io_stall_write_ms- old.io_stall_write_ms)/ CASE(vio.num_of_writes-old.num_of_writes)WHEN 0THEN 1ELSE vio.num_of_writes-old.num_of_writesEND AS[Ave write speed (ms)],
        vio
.num_of_writes- old.num_of_writesAS [Noof writes over period],
CONVERT(DEC(14,2),(vio.num_of_writes- old.num_of_writes)/ (@DurationInSecs *1.00))AS [Noof writes/sec],
CONVERT(DEC(14,2),(vio.num_of_bytes_written- old.num_of_bytes_written)/1048576.0)AS [Tot MB writtenover period],
CONVERT(DEC(14,2),((vio.num_of_bytes_written- old.num_of_bytes_written)/1048576.0)/ @DurationInSecs)AS [Tot MB written/sec],
(vio.num_of_bytes_written-old.num_of_bytes_written)/ CASE(vio.num_of_writes-old.num_of_writes)WHEN 0THEN 1ELSE vio.num_of_writes-old.num_of_writesEND AS[Ave write size (bytes)],
        mf
.physical_nameAS [Physicalfile name],
        size_on_disk_bytes
/1048576AS [File sizeon disk(MB)]
FROM sys.dm_io_virtual_file_stats(NULL,NULL) vio,
        sys
.master_files mf,
        @IOStats old
WHERE mf.database_id= vio.database_idAND
        mf
.file_id= vio.file_idAND
        old
.database_id= vio.database_idAND
        old
.file_id= vio.file_idAND
((vio.num_of_bytes_read- old.num_of_bytes_read)+ (vio.num_of_bytes_written- old.num_of_bytes_written))> 0
ORDERBY ((vio.num_of_bytes_read- old.num_of_bytes_read)+ (vio.num_of_bytes_written- old.num_of_bytes_written))DESC
GO

这篇关于使用sys.dm_io_virtual_file_stats了解你的数据库IO的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/602055

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa