使用sys.dm_io_virtual_file_stats了解你的数据库IO

2024-01-13 16:18

本文主要是介绍使用sys.dm_io_virtual_file_stats了解你的数据库IO,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

因为sys.dm_io_virtual_file_stats 返回数据和日志文件的 I/O 统计信息,包括对文件发出的读取/写入次数以及总字节数,所以这个函数既可以看到IOPS也可以看到吞吐量,还可以计算出单个IO的大小。另外也可以看到IO的等待时间。能够帮助我们很好的了解数据库的IO状况。
配合Perfmon一起使用可以很快的找到IO瓶颈。
下面的文章来自微软的以为高级工程师:
http://blogs.msdn.com/b/dpless/archive/2010/12/01/leveraging-sys-dm-io-virtual-file-stats.aspx

One of the DMVs I try to utilize on any engagement where customers are complaining about disk issues is the sys.dm_io_virtual_file_stats DMV where you can look at the IO stalls for both reads and writes. The sys.dm_io_virtual_file_stats DMV will show an IO Stall when any wait occurs to access a physical data file. IO Stalls are recorded at the file level and you can also obtain the IO Stalls at the database level directly out of the DMV.

By getting this information it is very easy to ORDER BY io_stall_read_ms, io_stall_write_ms, or by io_stall which is an accumulation of reads and writes.

One addition step I have made in the script below is mapping to the sys.master_files catalog view and using the substring function to get the physical disk drive letter. You will now be able to see IO Stall activity at the file, database, and the drive letter. You can then use Reporting Services or simply use Excel to get a quick view of which of these is absorbing most of the IO Stall impact.

If you use Excel 2007, one of the interesting strategies is to use the Chart Advisor from Live Labs.
http://www.officelabs.com/projects/chartadvisor/Pages/default.aspx

This analysis can help make decisions around table partitioning and potentially file and index placement. Of course, this will all depend on the customer's SAN and other constraints.

Note: Mount points will make getting the drive letter less effective. If you are using mount points then just ignore the drive letter column.

SELECT a.io_stall, a.io_stall_read_ms, a.io_stall_write_ms, a.num_of_reads,
a.num_of_writes,
--a.sample_ms, a.num_of_bytes_read, a.num_of_bytes_written, a.io_stall_write_ms,
( ( a.size_on_disk_bytes / 1024 ) / 1024.0 ) AS size_on_disk_mb,
db_name(a.database_id) AS dbname,
b.name, a.file_id,
db_file_type = CASE
WHEN a.file_id = 2 THEN
'Log'
ELSE
'Data'
END,
UPPER(SUBSTRING(b.physical_name, 1, 2))AS disk_location
FROM sys.dm_io_virtual_file_stats (NULL, NULL) a
JOIN sys.master_files bON a.file_id = b.file_id
AND a.database_id = b.database_id
ORDER BY a.io_stall DESC

For those looking at disk issues, I have pasted the general guidance on the avg. reads/sec and avg. writes/sec values for perfmon. By using the script above and the guidance here on perfmon, you should be able to take the next steps in addressing disk performance issues with your customers.

I/O Bottlenecks

SQL Server performance depends heavily on the I/O subsystem. Unless your database fits into physical memory, SQL Server constantly brings database pages in and out of the buffer pool. This generates substantial I/O traffic. Similarly, the log records need to be flushed to the disk before a transaction can be declared committed. And finally, SQL Server uses TempDB for various purposes such as to store intermediate results, to sort, to keep row versions and so on. So a good I/O subsystem is critical to the performance of SQL Server.

Access to log files is sequential except when a transaction needs to be rolled back while access to data files, including TempDB, is randomly accessed. So as a general rule, you should have log files on a separate physical disk than data files for better performance. The focus of this paper is not how to configure your I/O devices but to describe ways to identify if you have I/O bottleneck. Once an I/O bottleneck is identified, you may need to reconfigure your I/O subsystem.
If you have a slow I/O subsystem, your users may experience performance problems such as slow response times, and tasks that abort due to timeouts.
You can use the following performance counters to identify I/O bottlenecks. Note, these AVG values tend to be skewed (to the low side) if you have an infrequent collection interval. For example, it is hard to tell the nature of an I/O spike with 60-second snapshots. Also, you should not rely on one counter to determine a bottleneck; look for multiple counters to cross check the validity of your findings.

  • Physical Disk Object: Avg. Disk Queue Length represents the average number of physical read and write requests that were queued on the selected physical disk during the sampling period. If your I/O system is overloaded, more read/write operations will be waiting. If your disk queue length frequently exceeds a value of 2 during peak usage of SQL Server, then you might have an I/O bottleneck.
  • Avg. Disk Sec/Read is the average time, in seconds, of a read of data from the disk. Any number:
    • Less than 10 ms - very good
    • Between 10 - 20 ms - okay
    • Between 20 - 50 ms - slow, needs attention
    • Greater than 50 ms - Serious I/O bottleneck
  • Avg. Disk Sec/Write is the average time, in seconds, of a write of data to the disk. Please refer to the guideline in the previous bullet.
  • Physical Disk: %Disk Time is the percentage of elapsed time that the selected disk drive was busy servicing read or write requests. A general guideline is that if this value is greater than 50 percent, it represents an I/O bottleneck.
  • Avg. Disk Reads/Sec is the rate of read operations on the disk. You need to make sure that this number is less than 85 percent of the disk capacity. The disk access time increases exponentially beyond 85 percent capacity.
  • Avg. Disk Writes/Sec is the rate of write operations on the disk. Make sure that this number is less than 85 percent of the disk capacity. The disk access time increases exponentially beyond 85 percent capacity.

When using above counters, you may need to adjust the values for RAID configurations using the following formulas.

  • Raid 0 -- I/Os per disk = (reads + writes) / number of disks
  • Raid 1 -- I/Os per disk = [reads + (2 * writes)] / 2
  • Raid 5 -- I/Os per disk = [reads + (4 * writes)] / number of disks
  • Raid 10 -- I/Os per disk = [reads + (2 * writes)] / number of disks

For example, you have a RAID-1 system with two physical disks with the following values of the counters.

  • Disk Reads/sec -  80
  • Disk Writes/sec - 70
  • Avg. Disk Queue Length - 5

In that case, you are encountering (80 + (2 * 70))/2 = 110 I/Os per disk and your disk queue length = 5/2 = 2.5 which indicates a border line I/O bottleneck."

另外可以利用下面的脚本定期IO信息做比对分析:

SET NOCOUNTON

DECLARE @IOStatsTABLE (
[database_id][smallint]NOT NULL,
[file_id][smallint]NOT NULL,
[num_of_reads][bigint]NOT NULL,
[num_of_bytes_read][bigint]NOT NULL,
[io_stall_read_ms][bigint]NOT NULL,
[num_of_writes][bigint]NOT NULL,
[num_of_bytes_written][bigint]NOT NULL,
[io_stall_write_ms][bigint]NOT NULL)
INSERTINTO @IOStats
SELECT database_id,

                vio
.file_id,
                num_of_reads
,
                num_of_bytes_read
,
                io_stall_read_ms
,
                num_of_writes
,
                num_of_bytes_written
,
                io_stall_write_ms
FROM sys.dm_io_virtual_file_stats(NULL,NULL) vio
DECLARE @StartTime datetime, @DurationInSecsint

SET @StartTime= GETDATE()
WAITFOR DELAY'00:05:00'
SET @DurationInSecs= DATEDIFF(ss, @startTime, GETDATE())
SELECT DB_NAME(vio.database_id)AS [Database],
        mf
.nameAS [Logical name],
        mf
.type_descAS [Type],
(vio.io_stall_read_ms- old.io_stall_read_ms)/ CASE(vio.num_of_reads-old.num_of_reads)WHEN 0THEN 1ELSE vio.num_of_reads-old.num_of_readsEND AS[Ave read speed(ms)],
        vio
.num_of_reads- old.num_of_readsAS [Noof reads over period],
CONVERT(DEC(14,2),(vio.num_of_reads- old.num_of_reads)/ (@DurationInSecs *1.00))AS [Noof reads/sec],
CONVERT(DEC(14,2),(vio.num_of_bytes_read- old.num_of_bytes_read)/ 1048576.0)AS [Tot MBread over period],
CONVERT(DEC(14,2),((vio.num_of_bytes_read- old.num_of_bytes_read)/ 1048576.0)/ @DurationInSecs)AS [Tot MBread/sec],
(vio.num_of_bytes_read- old.num_of_bytes_read)/ CASE(vio.num_of_reads-old.num_of_reads)WHEN 0THEN 1ELSE vio.num_of_reads-old.num_of_readsEND AS[Ave read size(bytes)],
(vio.io_stall_write_ms- old.io_stall_write_ms)/ CASE(vio.num_of_writes-old.num_of_writes)WHEN 0THEN 1ELSE vio.num_of_writes-old.num_of_writesEND AS[Ave write speed (ms)],
        vio
.num_of_writes- old.num_of_writesAS [Noof writes over period],
CONVERT(DEC(14,2),(vio.num_of_writes- old.num_of_writes)/ (@DurationInSecs *1.00))AS [Noof writes/sec],
CONVERT(DEC(14,2),(vio.num_of_bytes_written- old.num_of_bytes_written)/1048576.0)AS [Tot MB writtenover period],
CONVERT(DEC(14,2),((vio.num_of_bytes_written- old.num_of_bytes_written)/1048576.0)/ @DurationInSecs)AS [Tot MB written/sec],
(vio.num_of_bytes_written-old.num_of_bytes_written)/ CASE(vio.num_of_writes-old.num_of_writes)WHEN 0THEN 1ELSE vio.num_of_writes-old.num_of_writesEND AS[Ave write size (bytes)],
        mf
.physical_nameAS [Physicalfile name],
        size_on_disk_bytes
/1048576AS [File sizeon disk(MB)]
FROM sys.dm_io_virtual_file_stats(NULL,NULL) vio,
        sys
.master_files mf,
        @IOStats old
WHERE mf.database_id= vio.database_idAND
        mf
.file_id= vio.file_idAND
        old
.database_id= vio.database_idAND
        old
.file_id= vio.file_idAND
((vio.num_of_bytes_read- old.num_of_bytes_read)+ (vio.num_of_bytes_written- old.num_of_bytes_written))> 0
ORDERBY ((vio.num_of_bytes_read- old.num_of_bytes_read)+ (vio.num_of_bytes_written- old.num_of_bytes_written))DESC
GO

这篇关于使用sys.dm_io_virtual_file_stats了解你的数据库IO的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/602055

相关文章

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Linux中的计划任务(crontab)使用方式

《Linux中的计划任务(crontab)使用方式》:本文主要介绍Linux中的计划任务(crontab)使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言1、linux的起源与发展2、什么是计划任务(crontab)二、crontab基础1、cro

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Ubuntu中远程连接Mysql数据库的详细图文教程

《Ubuntu中远程连接Mysql数据库的详细图文教程》Ubuntu是一个以桌面应用为主的Linux发行版操作系统,这篇文章主要为大家详细介绍了Ubuntu中远程连接Mysql数据库的详细图文教程,有... 目录1、版本2、检查有没有mysql2.1 查询是否安装了Mysql包2.2 查看Mysql版本2.

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

Win11安装PostgreSQL数据库的两种方式详细步骤

《Win11安装PostgreSQL数据库的两种方式详细步骤》PostgreSQL是备受业界青睐的关系型数据库,尤其是在地理空间和移动领域,:本文主要介绍Win11安装PostgreSQL数据库的... 目录一、exe文件安装 (推荐)下载安装包1. 选择操作系统2. 跳转到EDB(PostgreSQL 的