使用sys.dm_io_virtual_file_stats了解你的数据库IO

2024-01-13 16:18

本文主要是介绍使用sys.dm_io_virtual_file_stats了解你的数据库IO,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

因为sys.dm_io_virtual_file_stats 返回数据和日志文件的 I/O 统计信息,包括对文件发出的读取/写入次数以及总字节数,所以这个函数既可以看到IOPS也可以看到吞吐量,还可以计算出单个IO的大小。另外也可以看到IO的等待时间。能够帮助我们很好的了解数据库的IO状况。
配合Perfmon一起使用可以很快的找到IO瓶颈。
下面的文章来自微软的以为高级工程师:
http://blogs.msdn.com/b/dpless/archive/2010/12/01/leveraging-sys-dm-io-virtual-file-stats.aspx

One of the DMVs I try to utilize on any engagement where customers are complaining about disk issues is the sys.dm_io_virtual_file_stats DMV where you can look at the IO stalls for both reads and writes. The sys.dm_io_virtual_file_stats DMV will show an IO Stall when any wait occurs to access a physical data file. IO Stalls are recorded at the file level and you can also obtain the IO Stalls at the database level directly out of the DMV.

By getting this information it is very easy to ORDER BY io_stall_read_ms, io_stall_write_ms, or by io_stall which is an accumulation of reads and writes.

One addition step I have made in the script below is mapping to the sys.master_files catalog view and using the substring function to get the physical disk drive letter. You will now be able to see IO Stall activity at the file, database, and the drive letter. You can then use Reporting Services or simply use Excel to get a quick view of which of these is absorbing most of the IO Stall impact.

If you use Excel 2007, one of the interesting strategies is to use the Chart Advisor from Live Labs.
http://www.officelabs.com/projects/chartadvisor/Pages/default.aspx

This analysis can help make decisions around table partitioning and potentially file and index placement. Of course, this will all depend on the customer's SAN and other constraints.

Note: Mount points will make getting the drive letter less effective. If you are using mount points then just ignore the drive letter column.

SELECT a.io_stall, a.io_stall_read_ms, a.io_stall_write_ms, a.num_of_reads,
a.num_of_writes,
--a.sample_ms, a.num_of_bytes_read, a.num_of_bytes_written, a.io_stall_write_ms,
( ( a.size_on_disk_bytes / 1024 ) / 1024.0 ) AS size_on_disk_mb,
db_name(a.database_id) AS dbname,
b.name, a.file_id,
db_file_type = CASE
WHEN a.file_id = 2 THEN
'Log'
ELSE
'Data'
END,
UPPER(SUBSTRING(b.physical_name, 1, 2))AS disk_location
FROM sys.dm_io_virtual_file_stats (NULL, NULL) a
JOIN sys.master_files bON a.file_id = b.file_id
AND a.database_id = b.database_id
ORDER BY a.io_stall DESC

For those looking at disk issues, I have pasted the general guidance on the avg. reads/sec and avg. writes/sec values for perfmon. By using the script above and the guidance here on perfmon, you should be able to take the next steps in addressing disk performance issues with your customers.

I/O Bottlenecks

SQL Server performance depends heavily on the I/O subsystem. Unless your database fits into physical memory, SQL Server constantly brings database pages in and out of the buffer pool. This generates substantial I/O traffic. Similarly, the log records need to be flushed to the disk before a transaction can be declared committed. And finally, SQL Server uses TempDB for various purposes such as to store intermediate results, to sort, to keep row versions and so on. So a good I/O subsystem is critical to the performance of SQL Server.

Access to log files is sequential except when a transaction needs to be rolled back while access to data files, including TempDB, is randomly accessed. So as a general rule, you should have log files on a separate physical disk than data files for better performance. The focus of this paper is not how to configure your I/O devices but to describe ways to identify if you have I/O bottleneck. Once an I/O bottleneck is identified, you may need to reconfigure your I/O subsystem.
If you have a slow I/O subsystem, your users may experience performance problems such as slow response times, and tasks that abort due to timeouts.
You can use the following performance counters to identify I/O bottlenecks. Note, these AVG values tend to be skewed (to the low side) if you have an infrequent collection interval. For example, it is hard to tell the nature of an I/O spike with 60-second snapshots. Also, you should not rely on one counter to determine a bottleneck; look for multiple counters to cross check the validity of your findings.

  • Physical Disk Object: Avg. Disk Queue Length represents the average number of physical read and write requests that were queued on the selected physical disk during the sampling period. If your I/O system is overloaded, more read/write operations will be waiting. If your disk queue length frequently exceeds a value of 2 during peak usage of SQL Server, then you might have an I/O bottleneck.
  • Avg. Disk Sec/Read is the average time, in seconds, of a read of data from the disk. Any number:
    • Less than 10 ms - very good
    • Between 10 - 20 ms - okay
    • Between 20 - 50 ms - slow, needs attention
    • Greater than 50 ms - Serious I/O bottleneck
  • Avg. Disk Sec/Write is the average time, in seconds, of a write of data to the disk. Please refer to the guideline in the previous bullet.
  • Physical Disk: %Disk Time is the percentage of elapsed time that the selected disk drive was busy servicing read or write requests. A general guideline is that if this value is greater than 50 percent, it represents an I/O bottleneck.
  • Avg. Disk Reads/Sec is the rate of read operations on the disk. You need to make sure that this number is less than 85 percent of the disk capacity. The disk access time increases exponentially beyond 85 percent capacity.
  • Avg. Disk Writes/Sec is the rate of write operations on the disk. Make sure that this number is less than 85 percent of the disk capacity. The disk access time increases exponentially beyond 85 percent capacity.

When using above counters, you may need to adjust the values for RAID configurations using the following formulas.

  • Raid 0 -- I/Os per disk = (reads + writes) / number of disks
  • Raid 1 -- I/Os per disk = [reads + (2 * writes)] / 2
  • Raid 5 -- I/Os per disk = [reads + (4 * writes)] / number of disks
  • Raid 10 -- I/Os per disk = [reads + (2 * writes)] / number of disks

For example, you have a RAID-1 system with two physical disks with the following values of the counters.

  • Disk Reads/sec -  80
  • Disk Writes/sec - 70
  • Avg. Disk Queue Length - 5

In that case, you are encountering (80 + (2 * 70))/2 = 110 I/Os per disk and your disk queue length = 5/2 = 2.5 which indicates a border line I/O bottleneck."

另外可以利用下面的脚本定期IO信息做比对分析:

SET NOCOUNTON

DECLARE @IOStatsTABLE (
[database_id][smallint]NOT NULL,
[file_id][smallint]NOT NULL,
[num_of_reads][bigint]NOT NULL,
[num_of_bytes_read][bigint]NOT NULL,
[io_stall_read_ms][bigint]NOT NULL,
[num_of_writes][bigint]NOT NULL,
[num_of_bytes_written][bigint]NOT NULL,
[io_stall_write_ms][bigint]NOT NULL)
INSERTINTO @IOStats
SELECT database_id,

                vio
.file_id,
                num_of_reads
,
                num_of_bytes_read
,
                io_stall_read_ms
,
                num_of_writes
,
                num_of_bytes_written
,
                io_stall_write_ms
FROM sys.dm_io_virtual_file_stats(NULL,NULL) vio
DECLARE @StartTime datetime, @DurationInSecsint

SET @StartTime= GETDATE()
WAITFOR DELAY'00:05:00'
SET @DurationInSecs= DATEDIFF(ss, @startTime, GETDATE())
SELECT DB_NAME(vio.database_id)AS [Database],
        mf
.nameAS [Logical name],
        mf
.type_descAS [Type],
(vio.io_stall_read_ms- old.io_stall_read_ms)/ CASE(vio.num_of_reads-old.num_of_reads)WHEN 0THEN 1ELSE vio.num_of_reads-old.num_of_readsEND AS[Ave read speed(ms)],
        vio
.num_of_reads- old.num_of_readsAS [Noof reads over period],
CONVERT(DEC(14,2),(vio.num_of_reads- old.num_of_reads)/ (@DurationInSecs *1.00))AS [Noof reads/sec],
CONVERT(DEC(14,2),(vio.num_of_bytes_read- old.num_of_bytes_read)/ 1048576.0)AS [Tot MBread over period],
CONVERT(DEC(14,2),((vio.num_of_bytes_read- old.num_of_bytes_read)/ 1048576.0)/ @DurationInSecs)AS [Tot MBread/sec],
(vio.num_of_bytes_read- old.num_of_bytes_read)/ CASE(vio.num_of_reads-old.num_of_reads)WHEN 0THEN 1ELSE vio.num_of_reads-old.num_of_readsEND AS[Ave read size(bytes)],
(vio.io_stall_write_ms- old.io_stall_write_ms)/ CASE(vio.num_of_writes-old.num_of_writes)WHEN 0THEN 1ELSE vio.num_of_writes-old.num_of_writesEND AS[Ave write speed (ms)],
        vio
.num_of_writes- old.num_of_writesAS [Noof writes over period],
CONVERT(DEC(14,2),(vio.num_of_writes- old.num_of_writes)/ (@DurationInSecs *1.00))AS [Noof writes/sec],
CONVERT(DEC(14,2),(vio.num_of_bytes_written- old.num_of_bytes_written)/1048576.0)AS [Tot MB writtenover period],
CONVERT(DEC(14,2),((vio.num_of_bytes_written- old.num_of_bytes_written)/1048576.0)/ @DurationInSecs)AS [Tot MB written/sec],
(vio.num_of_bytes_written-old.num_of_bytes_written)/ CASE(vio.num_of_writes-old.num_of_writes)WHEN 0THEN 1ELSE vio.num_of_writes-old.num_of_writesEND AS[Ave write size (bytes)],
        mf
.physical_nameAS [Physicalfile name],
        size_on_disk_bytes
/1048576AS [File sizeon disk(MB)]
FROM sys.dm_io_virtual_file_stats(NULL,NULL) vio,
        sys
.master_files mf,
        @IOStats old
WHERE mf.database_id= vio.database_idAND
        mf
.file_id= vio.file_idAND
        old
.database_id= vio.database_idAND
        old
.file_id= vio.file_idAND
((vio.num_of_bytes_read- old.num_of_bytes_read)+ (vio.num_of_bytes_written- old.num_of_bytes_written))> 0
ORDERBY ((vio.num_of_bytes_read- old.num_of_bytes_read)+ (vio.num_of_bytes_written- old.num_of_bytes_written))DESC
GO

这篇关于使用sys.dm_io_virtual_file_stats了解你的数据库IO的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/602055

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Linux使用nload监控网络流量的方法

《Linux使用nload监控网络流量的方法》Linux中的nload命令是一个用于实时监控网络流量的工具,它提供了传入和传出流量的可视化表示,帮助用户一目了然地了解网络活动,本文给大家介绍了Linu... 目录简介安装示例用法基础用法指定网络接口限制显示特定流量类型指定刷新率设置流量速率的显示单位监控多个

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud