数据可视化软件在大数据时代的局限性

2024-01-13 06:10

本文主要是介绍数据可视化软件在大数据时代的局限性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

如今,数据可视化软件风靡起来,很多企业认为数据可视化软件是启用先进分析技术的入口。但对一些应用而言,情况并不是这样的。

纽约市的非营利组织DonorsChoose致力于跟踪和分析当地学校获得的财务捐助。在它试图为学校管理者、当地国会议员和记者出具一份报告时,它意识到数据可视化软件并不是万能的。乍一看,数据可视化系统对这种非技术组织来说应该是最好的选择了,不过该组织的数据科学家Vlad Dubovskiy表示,传统的数据可视化软件有诸多限制。


Dubovskiy表示,他考察过Yellowfin商务智能、Gooddata公司和Tableau软件的可视化软件,但都不满意,最终选择了Looker Data Sciences的系统。因为它可以以个性化的方式运行高级的报告。Dubovskiy说道:“我们已经能够编写真正复杂的业务规则了。”

这并不是说传统数据可视化软件系统无法提供个性化服务,或者裕兴高级的分析。Dubovskiy表示,组织中如果没有数据科学家,就需要过度依赖供应商。而DonorsChoose有自己的数据科学家团队,就可以选择比自服务可视化更高级的工具。

Dubovskiy表示,Looker系统确实能够将数据进行图形可视化,但这不是选择它的主要原因,因为很多数据可视化系统都有这个功能。我们之所以选择Looker,是因为它专有的可以定义报告标准的LookerML语言。在这种语言下,他拥有了更多的权限,可以制作相关性更高的报告。

最近,DonorsChoose使用Looker系统出具了捐赠指数报告,这份报告揭示了很多慈善捐赠的特点,无论是对普通教育学校还是对高等教育学校。报告显示,曼哈顿、布鲁克林和芝加哥收到的慈善捐赠最多。级别越低的学校越能收到更多的捐赠。科学、技术、工程和数学项目更易获得捐赠。

DonorsChoose从2000年成立之初就搜集这些数据。但他们不知道如何让学校和地区从这些数据中受益,方便它们筹款。最初,DonorsChoose只是开放了数据库,但只有技术人员才能从中发现关联,提取价值。所以在2013年,DonorsChoose就部署了报告系统。

DonorsChoose选择的应用与数据可视化软件有很多共同之处。大数据和传统商务智能的界限并不明显。Dubovskiy认为,你可以称它为大数据系统,不过它解决的并不是大数据问题。数据可视化软件也是这样,它们能够从数据中提取价值,但远没有大数据那么丰富。

不同的技术等级,需要不同的应用。对于初涉数据分析的组织来说,数据可视化软件是一个不错的选择,但对于DonorsChoose这种有数据科学家团队的中型组织,就需要Looker这种更成熟的软件。

Bingdata优网助帮汇聚多平台采集的海量数据,通过大数据技术的分析及预测能力为企业提供智能化的数据分析、运营优化、投放决策、精准营销、竞品分析等整合营销服务。

北京优网助帮信息技术有限公司(简称优网助帮)是以大数据为基础,并智能应用于整合营销的大数据公司,隶属于亨通集团。Bingdata是其旗下品牌。优网助帮团队主要来自阿里、腾讯、百度、金山、搜狐及移动、电信、联通、华为、爱立信等著名企业的技术大咖,兼有互联网与通信运营商两种基因,为大数据的算法分析提供强大的技术支撑。

 

这篇关于数据可视化软件在大数据时代的局限性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/600481

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

软件设计师备考——计算机系统

学习内容源自「软件设计师」 上午题 #1 计算机系统_哔哩哔哩_bilibili 目录 1.1.1 计算机系统硬件基本组成 1.1.2 中央处理单元 1.CPU 的功能 1)运算器 2)控制器 RISC && CISC 流水线控制 存储器  Cache 中断 输入输出IO控制方式 程序查询方式 中断驱动方式 直接存储器方式(DMA)  ​编辑 总线 ​编辑