poj 2135 Farm Tour 最小费用流 spfa优化 16_05_14

2024-01-13 02:48

本文主要是介绍poj 2135 Farm Tour 最小费用流 spfa优化 16_05_14,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://poj.org/problem?id=2135
题意:给你n个节点,中间连接有m条边,每条边有一定的权值,求两种1号节点走到n号节点没有公共边的走法中
总的权值最小的走法,输出这个最小值;

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
#define MM(a) memset(a,0,sizeof(a))
typedef long long ll;
typedef unsigned long long ULL;
const int mod = 1000000007;
const double eps = 1e-10;
const int inf = 0x3f3f3f3f;
const int big=50000;
int max(int a,int b) {return a>b?a:b;};
int min(int a,int b) {return a<b?a:b;};
const int N = 500;
const int M=20000;
struct edge{
int to,cap,cost,rev;
};
vector<edge> G[1005];
int dist[1005],inq[1005],prev[1005],prel[1005];
int n,m,x,y,c;
void add_edge(int u,int v,int cost)
{
G[u].push_back(edge{v,1,cost,G[v].size()});
G[v].push_back(edge{u,0,-cost,G[u].size()-1});
//cout<<u<<" "<<G[u].size()<<endl;
}
int mincost(int s,int t,int f)
{
int ans=0;
while(f>0)
{
memset(dist,inf,sizeof(dist));
memset(inq,0,sizeof(inq));
dist[s]=0;
queue<int> q;
q.push(s);
inq[s]=1;
while(!q.empty())
{
int u=q.front();
q.pop();inq[u]=0;
for(int j=0;j<G[u].size();j++)
{
edge &e=G[u][j];
if(e.cap>0&&dist[e.to]>dist[u]+e.cost)
{
dist[e.to]=dist[u]+e.cost;
prev[e.to]=u;
prel[e.to]=j;
if(!inq[e.to])
{
q.push(e.to);
inq[e.to]=1;
}
}
}
}
for(int i=t;i>s;)
{
int f=prev[i];
int j=prel[i];
G[f][j].cap-=1;
G[i][G[f][j].rev].cap+=1;
ans+=G[f][j].cost;
i=prev[i];
}
f-=1;
}
return ans;
}
int main()
{
while(~scanf("%d %d",&n,&m))
{
for(int i=1;i<=m;i++)
{
scanf("%d %d %d",&x,&y,&c);
add_edge(x,y,c);
add_edge(y,x,c);
}
printf("%d\n",mincost(1,n,2));
}
return 0;
}


上面是SPFA,下面是朴素的bellman 

   
  • #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <cmath>
    #include <vector>
    #include <queue>
    #include <map>
    #include <algorithm>
    #include <set>
    using namespace std;
    #define MM(a) memset(a,0,sizeof(a))
    typedef long long ll;
    typedef unsigned long long ULL;
    const int mod = 1000000007;
    const double eps = 1e-10;
    const int inf = 0x3f3f3f3f;
    const int big=50000;
    int max(int a,int b) {return a>b?a:b;};
    int min(int a,int b) {return a<b?a:b;};
    const int N = 500;
    const int M=20000;
    struct edge{
    int to,cap,cost,rev;
    };
    vector<edge> G[1005];
    int dist[1005],inq[1005],prev[1005],prel[1005];
    int n,m,x,y,c;
    void add_edge(int u,int v,int cost)
    {
    G[u].push_back(edge{v,1,cost,G[v].size()});
    G[v].push_back(edge{u,0,-cost,G[u].size()-1});
    //cout<<u<<" "<<G[u].size()<<endl;
    }
    int mincost(int s,int t,int f)
    {
    int ans=0;
    while(f>0)
    {
    memset(dist,inf,sizeof(dist));
    dist[s]=0;
    bool update=true;
    while(update)
    {
    update=false;
    for(int u=1;u<n;u++)
    for(int j=0;j<G[u].size();j++)
    {
    edge &e=G[u][j];
    if(e.cap>0&&dist[e.to]>dist[u]+e.cost)
    {
    dist[e.to]=dist[u]+e.cost;
    prev[e.to]=u;
    prel[e.to]=j;
    update=true;
    //cout<<"4"<<endl;
    }
    }
    }
    for(int i=t;i>s;)
    {
    int f=prev[i];
    int j=prel[i];
    G[f][j].cap-=1;
    G[i][G[f][j].rev].cap+=1;
    ans+=G[f][j].cost;
    i=prev[i];
    }
    f-=1;
    }
    return ans;
    }
    int main()
    {
    while(~scanf("%d %d",&n,&m))
    {
    for(int i=1;i<=m;i++)
    {
    scanf("%d %d %d",&x,&y,&c);
    add_edge(x,y,c);
    add_edge(y,x,c);
    }
    printf("%d\n",mincost(1,n,2));
    }
    return 0;
    }


分析:两条路不能有任意一条公共边,就决定了这道题目只能用流量为2的最小费用流,而不是最短路

下面是wa的代码:注意边的连接:无向路

   
  •      
    • #include <iostream>
      #include <cstdio>
      #include <cstring>
      #include <cstdlib>
      #include <cmath>
      #include <vector>
      #include <queue>
      #include <map>
      #include <algorithm>
      #include <set>
      using namespace std;
      #define MM(a) memset(a,0,sizeof(a))
      typedef long long ll;
      typedef unsigned long long ULL;
      const int mod = 1000000007;
      const double eps = 1e-10;
      const int inf = 0x3f3f3f3f;
      const int big=50000;
      int max(int a,int b) {return a>b?a:b;};
      int min(int a,int b) {return a<b?a:b;};
      const int N = 500;
      const int M=20000;
      struct edge{
      int to,cap,cost,rev;
      };
      vector<edge> G[1005];
      int dist[1005],inq[1005],prev[1005],prel[1005];
      int n,m,x,y,c;
      void add_edge(int u,int v,int cost)
      {
      G[u].push_back(edge{v,1,cost,G[v].size()});
      G[v].push_back(edge{u,0,-cost,G[u].size()-1});
      //cout<<u<<" "<<G[u].size()<<endl;
      }
      int mincost(int s,int t,int f)
      {
      int ans=0;
      while(f>0)
      {
      memset(dist,inf,sizeof(dist));
      dist[s]=0;
      bool update=true;
      while(update)
      {
      update=false;
      for(int u=1;u<n;u++)
      for(int j=0;j<G[u].size();j++)
      {
      edge &e=G[u][j];
      if(e.cap>0&&dist[e.to]>dist[u]+e.cost)
      {
      dist[e.to]=dist[u]+e.cost;
      prev[e.to]=u;
      prel[e.to]=j;
      update=true;
      //cout<<"4"<<endl;
      }
      }
      }
      for(int i=t;i>s;)
      {
      int f=prev[i];
      int j=prel[i];
      G[f][j].cap-=1;
      G[i][G[f][j].rev].cap+=1;
      ans+=G[f][j].cost;
      i=prev[i];
      }
      f-=1;
      }
      return ans;
      }
      int main()
      {
      while(~scanf("%d %d",&n,&m))
      {
      for(int i=1;i<=m;i++)
      {
      scanf("%d %d %d",&x,&y,&c);
      add_edge(x,y,c);
      add_edge(y,x,c);
      }
      printf("%d\n",mincost(1,n,2));
      }
      return 0;
      }



这篇关于poj 2135 Farm Tour 最小费用流 spfa优化 16_05_14的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/599997

相关文章

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜