本文主要是介绍【论文系列研读】Superpixel: SLIC+SNN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1、SLIC(PAMI2012)
Title:SLIC Superpixels Compared to State-of-the-art Superpixel Methods
Author:Radhakrishna Achanta ... (École Polytechnique Fédérale de Lausanne,EPFL 瑞士联邦理工学院)
Other Algorithms for generating superpixels
1.Graph-based algorithms
- treat each pixel as a node
- Edge weights are similarity between neighboring pixels.
- bipartite graph
- finding optimal paths
2.Gradient-ascent-based algorithms
算法:
Advantages
- Fastest
- most memory efficient
结果
1. 自然图像
2. 2D and 3D EM images
2、Superpixel Sampling Networks(ECCV2018)
Title:Superpixel Sampling Networks
Author:Varun Jampani ... (NVIDIA)
Why is SLIC not differentiable?
- a non-differentiable nearest neighbor operation
- Associate each pixel to the nearest superpixel center
Advantages:
soft-associations
- the first end-to-end trainable superpixel algorithm
- convert the nearest-neighbor operation into differentiable
- learning with flexible loss functions
算法
- m:superpixel个数
- QF=weighted sum of pixel features,距离为权值,对特征加权
- Optional:求每个superpixel内的最大距离值,最小化这个值
- column normalized Qt as Qˆt
Loss function:
segmentation tasks: cross-entropy loss
optical flow : L1-norm
compactness loss :lower spatial variance
结果:
这篇关于【论文系列研读】Superpixel: SLIC+SNN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!