Elasticsearch: NLP (Natural Language Processing)在 Elasticsearch 中的应用 - 7.x

2024-01-12 20:59

本文主要是介绍Elasticsearch: NLP (Natural Language Processing)在 Elasticsearch 中的应用 - 7.x,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

特别指出:这篇文章的内容适合 Elastic Stack 7.x 的发布。在最新的 Elastic Stack 8.x 的发布中,我们不需要安装任何的 NLP plugin。

通过 NLP,我们可以把我们导入的文档进行丰富,从而有更多内容供我们进行搜索,为我们更为精准的搜索打下基础。在今天的文章里,我来介绍一下 NLP  在 Elasticsearch 中的实际应用。我们可以看一下如下的一个例子。比如有一下的两个文档:

I personally like a sweet apple
Sweet, please come over here

假如我们把上面的两行分别作为两个文档导入到 Elasticsearch 之中,而当我们对我们的索引进行搜索 sweet 时:

GET test/_search
{"query": {"match": {"message": "sweet"}}
}

那么我们到底是想要得到哪个文档呢,或者是哪个文档更具有更好的相关性呢?在第一个句子中,我们看到 sweet 是一个形容词,而在第二个句子中,sweet 是一个人的名称,或是对一个喜欢人的昵称。我们更想得到那个文档呢?当然如果我们不做任何的处理,我们将返回两个文档。

另外,我们看一下另外一种情况,假如现在有一个文档是:

I went to Wuhan and Beijing cities in September last year

在上的文档中,有几个 entities:地点 (wuhan 和 Beijing) 及时间 (September last year)。通过 NLP 的处理,我们可以得到这个文档的更多信息,从而可以使得我们更加精确地搜索我们想要的文档。

在今天的练习中,我们将使用 https://github.com/spinscale/elasticsearch-ingest-opennlp ingest processor 来进行演示。目前这个 NLP 支持检测 Date, Person, Location, POS (part of speech) 及其它。在下面的练习中,我们将看到。


安装

如果你还没安装好自己的 Elasticsearch 及 Kibana,请参阅之前的文章 “Elastic:菜鸟上手指南” 来进行安装。在这里就不再累述了。我们接下来安装 openlp ingest processor。在 Elasticsearch 的安装目录下打入如下的命令:

bin/elasticsearch-plugin install https://github.com/spinscale/elasticsearch-ingest-opennlp/releases/download/7.8.0.1/ingest-opennlp-7.8.0.1.zip
$ bin/elasticsearch-plugin install https://github.com/spinscale/elasticsearch-ingest-opennlp/releases/download/7.8.0.1/ingest-opennlp-7.8.0.1.zip
-> Installing https://github.com/spinscale/elasticsearch-ingest-opennlp/releases/download/7.8.0.1/ingest-opennlp-7.8.0.1.zip
-> Downloading https://github.com/spinscale/elasticsearch-ingest-opennlp/releases/download/7.8.0.1/ingest-opennlp-7.8.0.1.zip
[=================================================] 100%   
-> Installed ingest-opennlp

我们通过如下的命令来检查安装是否成功:

bin/elasticsearch-plugin list
$ bin/elasticsearch-plugin list
ingest-opennlp

上面显示我们的 ingest-opennlp 已经安装成功了。在这里必须指出的是:我们必须安装和自己的 Elasticsearch 一致的版本。

按照 https://github.com/spinscale/elasticsearch-ingest-opennlp 上面的要求,如果我们是运行 Elasticsearch 6.5.2 或更新的版本,我们需要从 sourceforge 下载最新的 NER 模型。我们在 console 中打入如下的命令:

bin/ingest-opennlp/download-models
$ pwd
/Users/liuxg/elastic/elasticsearch-7.8.0
$ bin/ingest-opennlp/download-models
Downloading en-ner-persons.bin model... done
Downloading en-ner-locations.bin model... done
Downloading en-ner-dates.bin model... doneyou can use the following configuration settings nowingest.opennlp.model.file.persons: en-ner-persons.bin
ingest.opennlp.model.file.dates: en-ner-dates.bin
ingest.opennlp.model.file.locations: en-ner-locations.bin

上面显示,我们已经成功地下载了 persons, dates 及 locations 的模型。

接下来,我们需要在 Elasticsearch 中为 opennlp 进行配置。我们需要在 config/elasticsearch.yml 中添加如下的配置:

ingest.opennlp.model.file.persons: en-ner-persons.bin
ingest.opennlp.model.file.dates: en-ner-dates.bin
ingest.opennlp.model.file.locations: en-ner-locations.bin

这些模型可以在 config/ingest-opennlp 目录中找到。

$ pwd
/Users/liuxg/elastic/elasticsearch-7.8.0
liuxg:elasticsearch-7.8.0 liuxg$ ls config/ingest-opennlp/
en-ner-dates.bin     en-ner-locations.bin en-ner-persons.bin

配置完后,我们需要重新启动 Elasticsearch。

运用 opennlp

我们首先创建一个支持 NLP 的 pipeline。 在 Kibana 中运行如下的命令:

PUT _ingest/pipeline/opennlp-pipeline
{"description": "A pipeline to do named entity extraction","processors": [{"opennlp" : {"field" : "message"}}]
}

我们把刚开始的那个例子拿出来看看结果:

PUT /my-index/_doc/1?pipeline=opennlp-pipeline
{"message": "Shay Banon announced the release of Elasticsearch 6.0 in November 2017"
}

我们使用如下的命令来查看已经导入的文档:

GET my-index/_doc/1

上面的命令显示的结果是:

{"_index" : "my-index","_type" : "_doc","_id" : "1","_version" : 2,"_seq_no" : 1,"_primary_term" : 1,"found" : true,"_source" : {"entities" : {"dates" : ["November 2017"]},"message" : "Shay Banon announced the release of Elasticsearch 6.0 in November 2017"}
}

我们再来试另外一个例子:

PUT /my-index/_doc/2?pipeline=opennlp-pipeline
{"message" : "Kobe Bryant was one of the best basketball players of all times. Not even Michael Jordan has ever scored 81 points in one game. Munich is really an awesome city, but New York is as well. Yesterday has been the hottest day of the year."
}

再用如下的命令查看已经导入的文档:

GET my-index/_doc/2

上面的命令显示的结果是:

{"_index" : "my-index","_type" : "_doc","_id" : "2","_version" : 1,"_seq_no" : 2,"_primary_term" : 1,"found" : true,"_source" : {"entities" : {"persons" : ["Kobe Bryant","Michael Jordan"],"dates" : ["Yesterday"],"locations" : ["Munich","New York"]},"message" : "Kobe Bryant was one of the best basketball players of all times. Not even Michael Jordan has ever scored 81 points in one game. Munich is really an awesome city, but New York is as well. Yesterday has been the hottest day of the year."}
}

从上面显示的结果我们可以看出来,它正确地识别了 dates,persons 及 locations。刚才试了一些中文,对中文的支持不好。可能在 ingest processor 中需要加入对中文的支持。

你也可以在 pipeline 中支持你只想要的 entity,比如 names:

PUT _ingest/pipeline/opennlp-pipeline
{"description": "A pipeline to do named entity extraction","processors": [{"opennlp" : {"field" : "message","fields": ["persons"]}}]
}

那么返回的结果将是:

{"_index" : "my-index","_type" : "_doc","_id" : "2","_version" : 3,"_seq_no" : 7,"_primary_term" : 1,"found" : true,"_source" : {"entities" : {"persons" : ["Kobe Bryant","Michael Jordan"]},"message" : "Kobe Bryant was one of the best basketball players of all times. Not even Michael Jordan has ever scored 81 points in one game. Munich is really an awesome city, but New York is as well. Yesterday has been the hottest day of the year."}
}

在上面,我们可以看到只有 persons 这个 entity 被返回。

你还可以以带注释的 annotated text plugin 来丰富文档:

PUT _ingest/pipeline/opennlp-pipeline
{"description": "A pipeline to do named entity extraction","processors": [{"opennlp" : {"field" : "message","annotated_text_field" : "my_annotated_text_field"}}]
}

那么返回的文档将是:

{"_index" : "my-index","_type" : "_doc","_id" : "2","_version" : 4,"_seq_no" : 8,"_primary_term" : 1,"found" : true,"_source" : {"my_annotated_text_field" : "[Kobe Bryant](Person_Kobe Bryant) was one of the best basketball players of all times. Not even [Michael Jordan](Person_Michael Jordan) has ever scored 81 points in one game. [Munich](Location_Munich) is really an awesome city, but [New York](Location_New York) is as well. [Yesterday](Date_Yesterday) has been the hottest day of the year.","entities" : {"persons" : ["Kobe Bryant","Michael Jordan"],"dates" : ["Yesterday"],"locations" : ["Munich","New York"]},"message" : "Kobe Bryant was one of the best basketball players of all times. Not even Michael Jordan has ever scored 81 points in one game. Munich is really an awesome city, but New York is as well. Yesterday has been the hottest day of the year."}
}

在上面,我们开业看到一个叫做 my_annotated_text_field 的字段。它的内容如下:

"my_annotated_text_field" : "[Kobe Bryant](Person_Kobe Bryant) was one of the best basketball players of all times. Not even [Michael Jordan](Person_Michael Jordan) has ever scored 81 points in one game. [Munich](Location_Munich) is really an awesome city, but [New York](Location_New York) is as well. [Yesterday](Date_Yesterday) has been the hottest day of the year.",

上面标识识别的 persons, date 及 location 的地方。

用途

到目前为止可能你已经知道了 NLP 的基本用法了。那在实际的使用中有什么具体的用途呢?我个人觉得针对新闻工作者来说,其实还是蛮有用途的。比如,我们想搜索 yesterday 在 wuhan 或者 beijing 发生的新闻。我们可以通过 NLP 的方法把新闻的内容导入到 Elasticsearch 中,并使用 NLP 丰富 locations, dates 这样的字段。这样我们很容更加精准地搜索到我们想要的内容。

参考:

【1】 https://github.com/spinscale/elasticsearch-ingest-opennlp

这篇关于Elasticsearch: NLP (Natural Language Processing)在 Elasticsearch 中的应用 - 7.x的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/599149

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,