342. 道路与航线(拓扑排序,Dijkstra综合应用)

2024-01-11 18:12

本文主要是介绍342. 道路与航线(拓扑排序,Dijkstra综合应用),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

342. 道路与航线 - AcWing题库

农夫约翰正在一个新的销售区域对他的牛奶销售方案进行调查。

他想把牛奶送到 T 个城镇,编号为 1∼T。

这些城镇之间通过 R 条道路 (编号为 1 到 R) 和 P 条航线 (编号为 1 到 P) 连接。

每条道路 i 或者航线 i 连接城镇 Ai 到 Bi,花费为 Ci。

对于道路,0≤Ci≤10,000;然而航线的花费很神奇,花费 Ci 可能是负数(−10,000≤Ci≤10,000)。

道路是双向的,可以从 Ai 到 Bi,也可以从 Bi 到 Ai,花费都是 Ci。

然而航线与之不同,只可以从 Ai 到 Bi。

事实上,由于最近恐怖主义太嚣张,为了社会和谐,出台了一些政策:保证如果有一条航线可以从 Ai 到 Bi,那么保证不可能通过一些道路和航线从 Bi 回到 Ai。

由于约翰的奶牛世界公认十分给力,他需要运送奶牛到每一个城镇。

他想找到从发送中心城镇 S 把奶牛送到每个城镇的最便宜的方案。

输入格式

第一行包含四个整数 T,R,P,S。

接下来 R 行,每行包含三个整数(表示一个道路)Ai,Bi,Ci。

接下来 P 行,每行包含三个整数(表示一条航线)Ai,Bi,Ci。

输出格式

第 1..T 行:第 i 行输出从 S 到达城镇 i 的最小花费,如果不存在,则输出 NO PATH

数据范围

1≤T≤25000
1≤R,P≤50000
1≤Ai,Bi,S≤T

输入样例:
6 3 3 4
1 2 5
3 4 5
5 6 10
3 5 -100
4 6 -100
1 3 -10
输出样例:
NO PATH
NO PATH
5
0
-95
-100

 解析:

由于题目说:保证如果有一条航线可以从 Ai 到 Bi,那么保证不可能通过一些道路和航线从 Bi 回到 Ai。

所以图中有路线和点组成的强连通分量,可以将每个强连通分量看作是一个点,每个点之间有航线(单向边)连接,且这个由强连通分量构成的图为拓扑图。

对于单源最短路问题:

1.如果一个图的边权非负,那么就可以使用 Dijkstra 算法,时间复杂度为 mlogn.

2.如果是拓扑图,不管边权是正是负,均可按照拓扑序扫描,时间复杂度是线性的

因此,可以想到,每个强连通分量内部我们可以使用 Dijkstra 算法,强连通分量之间我们可以使用拓扑排序。

算法实现:

1.先输入所有双向道路,然后dfs出所有连通块,计算两个数组:id[] 存储每个点属于哪个连通块;vector<int>block[]存储每个连通块里有哪些点;

2.输入所有航线,同时统计出每个连通块的入度。

3.按照拓扑排序一次处理每个连通块,先将所有入读为0的连通块的编号加入队列中。

4.每次从队头取出一个连通块的编号bid

5.将改block[bid]中的所有点加入堆中,然后对堆中所有点跑Dijkstra算法。

6.每次取出堆中距离最小的点ver

7.遍历ver的所有邻点 j,如果 id[ver]=id[j],那么如果j能被更新,则将j插入堆中;如果id[ver]!=id[j],则将id[j]这个连通块的入度减1,如果减成0了,则将其插入拓扑排序的队列中

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
using namespace std;
typedef pair<double, int > PDI;
typedef pair<int, int> PII;
const int N = 25000 + 5, M = 150000+5,INF=0x3f3f3f3f;
int n, mr, mp, S;
int h[N], e[M], w[M], ne[M], idx;
int din[N], id[N], d[N];
vector<int>block[N];
int vis[N];
queue<int>q;void add(int a, int b, int c) {e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}void dfs(int ver, int cnt) {id[ver] = cnt;block[cnt].push_back(ver);for (int i = h[ver]; i != -1; i = ne[i]) {int j = e[i];if (!id[j])dfs(j, cnt);}
}void Dijkstra(int u) {priority_queue<PII, vector<PII>, greater<PII>>heap;for (auto i : block[u])heap.push({ d[i],i });while (!heap.empty()) {auto t = heap.top();heap.pop();int y = t.second;if (vis[y])continue;vis[y] = 1;for (int i = h[y]; i != -1; i = ne[i]) {int j = e[i];if (d[j] > d[y] + w[i]) {d[j] = d[y] + w[i];if (id[y] == id[j])heap.push({ d[j],j });}if (id[y] != id[j]) {din[id[j]]--;if (din[id[j]] == 0)q.push(id[j]);}}}
}void topsort(int cnt) {for (int i = 1; i < cnt; i++) {if (!din[i])q.push(i);}while (!q.empty()) {int t = q.front();q.pop();Dijkstra(t);}
}int main() {scanf("%d%d%d%d", &n, &mr, &mp, &S);memset(h, -1, sizeof h);for (int i = 1,a,b,c; i <= mr; i++) {scanf("%d%d%d", &a, &b, &c);add(a, b, c);add(b, a, c);}int cnt = 1;for (int i = 1; i <= n; i++) {if (!id[i]) {dfs(i, cnt);cnt++;}}for (int i = 1,a,b,c; i <= mp; i++) {scanf("%d%d%d", &a, &b, &c);add(a, b, c);din[id[b]]++;}memset(d, 0x3f, sizeof d);d[S] = 0;topsort(cnt);for (int i = 1; i <= n; i++) {if (d[i] > INF / 2) {printf("NO PATH\n");}else {printf("%d\n", d[i]);}}return 0;
}

 

这篇关于342. 道路与航线(拓扑排序,Dijkstra综合应用)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/595269

相关文章

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象

Go信号处理如何优雅地关闭你的应用

《Go信号处理如何优雅地关闭你的应用》Go中的优雅关闭机制使得在应用程序接收到终止信号时,能够进行平滑的资源清理,通过使用context来管理goroutine的生命周期,结合signal... 目录1. 什么是信号处理?2. 如何优雅地关闭 Go 应用?3. 代码实现3.1 基本的信号捕获和优雅关闭3.2

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,