频数表和列联表,以及进一步处理分析 -- R

2024-01-11 17:44

本文主要是介绍频数表和列联表,以及进一步处理分析 -- R,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目的

数据框包含了一些分类变量,问?

1.如何统计分类变量的分布次数 -- 频数表
2.如何统计多分类变量的分布次数 -- 频联表
3.单个分类变量的分类结果是否满足理论分类结果  -- 拟合优度问题
4.多个分类变量的分类结果是否相关干扰  -- 分类变量(多因素)独立性检验

数据

library(vcd)data(Arthritis)
head(Arthritis)#  ID Treatment  Sex Age Improved
#1 57   Treated Male  27     Some
#2 46   Treated Male  29     None
#3 77   Treated Male  30     None
#4 17   Treated Male  32   Marked
#5 36   Treated Male  46   Marked
#6 23   Treated Male  58   Marked
# 频数表
table(Arthritis$Treatment)
# Placebo Treated 43      41 # 频联表
table(Arthritis$Treatment,Arthritis$Improved)
#          None Some Marked
#  Placebo   29    7      7
#  Treated   13    7     21

代码

  • 操作频数表
# 把频数表变成百分比占比
prop.table(table(Arthritis$Treatment))
# Placebo Treated 
#  0.5119  0.4881 
prop.table(table(Arthritis$Treatment)) *100
# Placebo Treated 
#  51.19   48.81# 把列联表变成百分比形式
prop.table(table(Arthritis$Treatment,Arthritis$Improved))
#              None     Some   Marked
# Placebo 0.345238 0.083333 0.08333
# Treated 0.154762 0.083333 0.250000# 按行求百分比
prop.table(table(Arthritis$Treatment,Arthritis$Improved),1)
# None    Some  Marked
# Placebo 0.67442 0.16279 0.16279
# Treated 0.31707 0.17073 0.51220
# 按列求百分比
prop.table(table(Arthritis$Treatment,Arthritis$Improved),2)
# None    Some  Marked
#  Placebo 0.69048 0.50000 0.25000
#  Treated 0.30952 0.50000 0.75000# 给列联表添加行列计数
addmargins(table(Arthritis$Treatment,Arthritis$Improved))
#       None Some Marked Sum
#  Placebo   29    7      7  43
# Treated   13    7     21  41
# Sum       42   14     28  84
addmargins(table(Arthritis$Treatment,Arthritis$Improved),1)
#          None Some Marked
#  Placebo   29    7      7
#  Treated   13    7     21
#  Sum       42   14     28
addmargins(table(Arthritis$Treatment,Arthritis$Improved),2)
#          None Some Marked Sum
#  Placebo   29    7      7  43
# Treated   13    7     21  41prop.table(addmargins(table(Arthritis$Treatment,Arthritis$Improved)))
#             None     Some   Marked      Sum
#  Placebo 0.086310 0.020833 0.020833 0.127976
#  Treated 0.038690 0.020833 0.062500 0.122024
#  Sum     0.125000 0.041667 0.083333 0.250000
# 单个分类变量的分类结果是否满足理论分类结果
table(Arthritis$Improved)
# None   Some Marked 
#   42     14     28 x <- Arthritis$Improved
# 模拟一个理论分布
y <- c(rep("None",30),rep("Some",30),rep("Marked",24))# 卡方检验
chisq.test(x,y)
# Pearson's Chi-squared test
# data:  x and y
# X-squared = 6.78, df = 4, p-value = 0.15
# 原假设 H0: 实际频次分布和理论频次分布不相似
# 因为 p >= 0.05,接受原假设,也就是数据中的频次分布和理论上的分布(y)不相似#模拟一个 和实际分布很相似的数据
y <- c(rep("None",39),rep("Some",16),rep("Marked",29))
chisq.test(x,y)# Pearson's Chi-squared test
# data:  x and y
# X-squared = 16.8, df = 4, p-value = 0.0021
# 此时p <= 0.05,需要拒绝原假设接受备择假设,也就是实际频次分布和理论频次分布相似
# 多个分类变量的分类结果是否相关干扰  -- 分类变量(多因素)独立性检验
table(Arthritis$Treatment,Arthritis$Improved)
# None Some Marked
#  Placebo   29    7      7
#  Treated   13    7     21
#问 treatment 方式对improved的频次分布有影响嘛?或者说两个分类变量独立吗?# 卡方检验,直接把频联表丢给chisq.test( )函数即可    <==== 参数检验
mytable <- table(Arthritis$Treatment,Arthritis$Improved)
chisq.test(mytable)# Pearson's Chi-squared test
# data:  mytable
# X-squared = 13.1, df = 2, p-value = 0.0015
# p <= 0.05 拒绝原假设:相互独立,也就是treatment 方式对improved的频次分布有影响# Fisher's精确检验(Fisher's exact test)         <=========非参数检验
fisher.test(mytable)# 	Fisher's Exact Test for Count Data
# data:  mytable
# p-value = 0.0014
# alternative hypothesis: two.sided
# p <= 0.05 拒绝原假设:相互独立,也就是treatment 方式对improved的频次分布有影响
# 上面看到两个分类变量是相互影响的
# 问:如何度量它们之间的相关性强度呢?
library(vcd)mytable <- table(Arthritis$Treatment,Arthritis$Improved)
assocstats(mytable)#                     X^2 df  P(> X^2)
# Likelihood Ratio 13.530  2 0.0011536
# Pearson          13.055  2 0.0014626# Phi-Coefficient   : NA 
# Contingency Coeff.: 0.367 
# Cramer's V        : 0.394 

vcdӉ中的assocstats()函数可以计算二维列联表的phi系数,列联系数,Cramer‘s V系数
总体来说,较大的数值意味着较强的相关性

这篇关于频数表和列联表,以及进一步处理分析 -- R的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/595191

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

Thymeleaf:生成静态文件及异常处理java.lang.NoClassDefFoundError: ognl/PropertyAccessor

我们需要引入包: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-thymeleaf</artifactId></dependency><dependency><groupId>org.springframework</groupId><artifactId>sp

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断