【得物技术】GOREPLAY流量录制回放实战

2024-01-11 10:18

本文主要是介绍【得物技术】GOREPLAY流量录制回放实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GoReplay 简介

随着应用程序的复杂度的增长,测试它所需要的工作量也呈指数级增长。 GoReplay 为我们提供了复用现有流量进行测试的简单想法。GoReplay是一个用golang开发的简单的流量录制插件,支持多种方式的过滤,限流放大,重写等等特性。GoReplay 可以做到对代码完全无侵入性,也不需要更改你的生产基础设施,并且与语言无关。它不是代理,而是直接监听网卡上的流量。

GoReplay 工作方式:listener server 捕获流量,并将其发送至 replay server 或者保存至文件,或者保存到kafka。然后replay server 会将流量转移至配置的地址

使用过程

需求:接到算法侧的需求,需要录制真实的生产环境流量,并且随时回放到任意环境。

由于算法侧部分场景为非Java语言编写,现存的流量录制平台暂时无法支持,需要采用新的录制组件来支撑压测需求,遂选择goreplay 。

GoReplay支持将录制的数据存储到本地文件中,然后回放时从文件中读取。考虑到每次录制回放时需要进行存储及下发文件的复杂度,我们期望使用更便捷的方式来管理数据。

GoReplay也是原生支持录制数据存储到kafka中的,但是在使用的时候,发现它有较大的限制;使用kafka存储数据时,必须是流量录制的同时进行流量回放,其架构图如下:

流程1-4 无法拆分,只能同时进行

这会显得流量录制回放功能很鸡肋,我们需要录制好的数据任意时刻重放,并且也要支持将一份录制好的数据多次重放。既然它已经将流量数据存储到了kafka,我们就可以考虑对GoReplay进行改造,以让他支持我们的需求。

改造后的流量录制回放架构图:

图中,1-2 与 3-5 阶段是相互独立的

也就是说,流量录制过程与回放过程可以拆开。只需要在录制开始与结束的时候记录kafka的offset,就可以知道这个录制任务包含了哪些数据,我们可以轻松的将每一段录制数据,整理成录制任务,然后在需要的时候进行流量回放。

改造与整合

kafka offset 支持改造

简要过程:

源码中的 InputKafkaConfig 的定义

type InputKafkaConfig struct {producer sarama.AsyncProducerconsumer sarama.ConsumerHost     string `json:"input-kafka-host"`Topic    string `json:"input-kafka-topic"`UseJSON  bool   `json:"input-kafka-json-format"`
}

修改后的 InputKafkaConfig 的定义

type InputKafkaConfig struct {producer  sarama.AsyncProducerconsumer  sarama.ConsumerHost      string `json:"input-kafka-host"`Topic     string `json:"input-kafka-topic"`UseJSON   bool   `json:"input-kafka-json-format"`StartOffset    int64  `json:"input-kafka-offset"`EndOffset int64  `json:"input-kafka-end-offset"`
}

源码中,从kafka读取数据的片段:
可以看到,它选取的offset 是 Newest

for index, partition := range partitions {consumer, err := con.ConsumePartition(config.Topic, partition, sarama.OffsetNewest)go func(consumer sarama.PartitionConsumer) {defer consumer.Close()for message := range consumer.Messages() {i.messages <- message}}(consumer)}

修改过后的从kafka读数据的片段:

for index, partition := range partitions {consumer, err := con.ConsumePartition(config.Topic, partition, config.StartOffset)offsetEnd := config.EndOffset - 1go func(consumer sarama.PartitionConsumer) {defer consumer.Close()for message := range consumer.Messages() {// 比较消息的offset, 当超过这一批数据的最大值的时候,关闭通道if offsetFlag && message.Offset > offsetEnd {i.quit <- struct{}{}break}i.messages <- message}}(consumer)}

此时,只要在启动回放任务时,指定kafka offset的范围。就可以达到我们想要的效果了。

整合到压测平台

通过页面简单的填写选择操作,然后生成启动命令,来替代冗长的命令编写

StringBuilder builder = new StringBuilder("nohup /opt/apps/gor/gor");
// 拼接参数 组合命令
builder.append(" --input-kafka-host ").append("'").append(kafkaServer).append("'");
builder.append(" --input-kafka-topic ").append("'").append(kafkaTopic).append("'");
builder.append(" --input-kafka-start-offset ").append(record.getStartOffset());
builder.append(" --input-kafka-end-offset ").append(record.getEndOffset());
builder.append(" --output-http ").append(replayDTO.getTargetAddress());
builder.append(" --exit-after ").append(replayDTO.getMonitorTimes()).append("s");
if (StringUtils.isNotBlank(replayDTO.getExtParam())) {builder.append(" ").append(replayDTO.getExtParam());
}
builder.append(" > /opt/apps/gor/replay.log 2>&1 &");
String completeParam = builder.toString();

压测平台通过 Java agent 暴露的接口来控制 GoReplay进程的启停

String sourceAddress = replayDTO.getSourceAddress();
String[] split = sourceAddress.split(COMMA);
for (String ip : split) {String uri = String.format(HttpTrafficRecordServiceImpl.BASE_URL + "/gor/start", ip, 	 											HttpTrafficRecordServiceImpl.AGENT_PORT);// 重新创建对象GoreplayRequest request = new GoreplayRequest();request.setConfig(replayDTO.getCompleteParam());request.setType(0);try {restTemplate.postForObject(uri, request, String.class);} catch (RestClientException e) {LogUtil.error("start gor fail,please check it!", e);MSException.throwException("start gor fail,please check it!", e);}
}

文/一码当先

关注得物技术,做最潮技术人!

这篇关于【得物技术】GOREPLAY流量录制回放实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/594039

相关文章

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(