【单细胞高级绘图】09.细胞通讯_两组比较_连线图

2024-01-11 07:30

本文主要是介绍【单细胞高级绘图】09.细胞通讯_两组比较_连线图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上周一位读者联系我,让我帮忙发一个绘图的单子。在朋友圈发单后,感兴趣的朋友很多,有十几位还私聊我让我分享一下代码,可见大家还是很感兴趣的。不过等了两天,依旧没有勇士接单,可能是因为这种图比较少见,大家画得少。

先来理解一下这张图,在b图中:

  • 左边是EC细胞表达的ligand,右边是mNEUR细胞表达的receptor
  • ligand这一列对应的基因会排序,依据是两个group(比如young和old两组)在EC细胞中找完差异基因后,能知道这些基因的log(FC_young_to_old),从大到小依次往下排,并涂色。同时,找差异基因也能知道p值,原文表示显著性用的是圆环的颜色,越显著,圆环颜色越深。
  • receptor这一列类似ligand列,不过是在mNEUR细胞中,两组之间找差异基因。
  • 图中的线段,表示ligand-receptor对,而这个信息(谁和谁构成受配体)是已知的,数据库可以下载到(也就是说,这个图即便不做细胞通讯分析,只要能下载到ligand-receptor信息,也能画)。cellphonedb的输出结果也间接含有这个信息,我的代码基于这个。
  • 至于连线的颜色,我看了一下,没怎么变化,所以我推测线段的颜色取决于线段两侧ligand-receptor是高表达还是低表达,高表达时线段用浅红色,低表达时线段用浅蓝色。

以上解读均为我的理解,我没有看原文。我的图会略作更改,下文会说。

另外,因为一些互作关系没法用一个ligand一个receptor去表示,这样的pair不适合用这个图展示。


此篇推文的代码一共有3个:CCC_compare2.RCCC_line.RCCC_line2.R。每个代码都能出一张有意义的图。

准备数据

source("CCC_compare2.R")
CCC_compare2(group1.name = "Old",group2.name = "Young",group1.pfile = "cellphonedb/Old/pvalues.txt",group1.mfile="cellphonedb/Old/means.txt",group2.pfile="cellphonedb/Young/pvalues.txt",group2.mfile="cellphonedb/Young/means.txt",p.threshold = 0.05,thre=0.5,cell.pair="EC|APC", #指定ligand产生的细胞|receptor产生的细胞plot.width=15,plot.height=30,filename = "test3_"
)

前几行代码跟上一节是类似的,也能输出一个表格(test3_Old2Young.xlsx)和对应的气泡图
后续的连线图基于这个表格的数据。

连线图有个特点,就是"谁是ligand,谁是receptor,ligand和receptor分别由什么细胞产生"非常明确,CCC_compare2.R这个代码比CCC_compare.R (在上一节)增加一百多行去理清这个事情,输出的图和表格pair左边的就是ligand(产生的细胞),右边的就是receptor(产生的细胞)

连线图的绘制 第1种方法

source("CCC_line.R")
CCC_line(table.path="test3_Old2Young.xlsx",ligand.cell="EC",receptor.cell="APC",group1.name = "Old",group2.name = "Young",#这五个参数和上一步对应ligand.color="#4dbbd6",receptor.color="#90d1c1",pt.size=6,line.thre1=0.5,line.thre2=6,#line.thre1和上一步的"thre"参数一致,line.thre2可以用来调整线的粗细,值越大,线越细file.name="test3_",plot.width=25,plot.height=20)

第一种方法不涉及差异基因,因此左右两列是统一的圆点。线段粗颜色红,表示(相较于group2)group1的互作强;线段粗颜色蓝,表示(相较于group2)group1的互作弱。

连线图的绘制 第2种方法

library(Seurat)
testseu=readRDS("testseu.rds")
# 此次演示为了加快运行速度,人为减少了数据量,实际分析中找差异基因不建议这么做
selectedCB=sample(testseu@meta.data$CB,1000)
testseu=testseu%>%subset(CB %in% selectedCB)# 基于分组找差异基因
marker_group=data.frame()
Idents(testseu)="celltype_age"
for ( ci in c("EC","APC") ) {tmp.marker <- FindMarkers(testseu, logfc.threshold = 0, min.pct = 0.01,only.pos = F, test.use = "wilcox",ident.1=paste0(ci,"_Old"),ident.2=paste0(ci,"_Young"))tmp.marker$gene=rownames(tmp.marker)tmp.marker$cluster_group=ifelse(tmp.marker$avg_log2FC > 0,paste0(ci,"_Old"),paste0(ci,"_Young"))tmp.marker$cluster=citmp.marker=tmp.marker%>%arrange(desc(avg_log2FC))marker_group=marker_group%>%rbind(tmp.marker)
}
#本次演示的数据集为小鼠数据集,在运行cellphonedb时,进行了基因symbol的转换。
#此处找差异基因得到的symbol为真实基因名,为了让两个分析匹配,DEG表格也应该做基因名转换。
#但是为了简化,此处只是简单地将小鼠基因名转为大写,不是很精确。大家在分析的时候建议严格一点。
marker_group$gene=marker_group$gene %>% toupper()

第二种方法需要不设置筛选条件去找差异基因,然后用CCC_line2函数就可以了

source("CCC_line2.R")
CCC_line2(cpdb.table.path = "test3_Old2Young.xlsx",marker_group = marker_group,ligand.cell = "EC",receptor.cell = "APC",group1.name = "Old",group2.name = "Young",line.size = 2,file.name = "test3_",plot.width = 25,plot.height = 20)

这种方法得到的图,左右两列添加了差异基因相关的信息,p值、log2FC。线段的粗细固定了,线段的颜色表示(相较于group2)group1的互作强弱。


本文代码编写(3个函数)花费大量时间,故不无偿提供,有需要的朋友可以公粽号后台回复2022B

这篇关于【单细胞高级绘图】09.细胞通讯_两组比较_连线图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/593589

相关文章

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Android协程高级用法大全

《Android协程高级用法大全》这篇文章给大家介绍Android协程高级用法大全,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友跟随小编一起学习吧... 目录1️⃣ 协程作用域(CoroutineScope)与生命周期绑定Activity/Fragment 中手

Python如何实现高效的文件/目录比较

《Python如何实现高效的文件/目录比较》在系统维护、数据同步或版本控制场景中,我们经常需要比较两个目录的差异,本文将分享一下如何用Python实现高效的文件/目录比较,并灵活处理排除规则,希望对大... 目录案例一:基础目录比较与排除实现案例二:高性能大文件比较案例三:跨平台路径处理案例四:可视化差异报

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

Java Stream 的 Collectors.toMap高级应用与最佳实践

《JavaStream的Collectors.toMap高级应用与最佳实践》文章讲解JavaStreamAPI中Collectors.toMap的使用,涵盖基础语法、键冲突处理、自定义Map... 目录一、基础用法回顾二、处理键冲突三、自定义 Map 实现类型四、处理 null 值五、复杂值类型转换六、处理

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group