Opentsdb官方优化文档 - 翻译

2024-01-11 07:20

本文主要是介绍Opentsdb官方优化文档 - 翻译,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文档地址 :

Tuning — OpenTSDB 2.4 documentation

Tuning

As with any database there are many tuning parameters for OpenTSDB that can be used to improve write and read performance. Some of these options are specific to certain backends, others are global.

翻译:

与任何数据库一样,OpenTSDB有许多调优参数可用于提高写和读性能。其中一些选项是特定于某些后端的,另一些则是全局的。

TSDB Memory

As with any server process, tuning the TSD’s memory footprint is important for a successful install. There are a number of caches in OpenTSDB that can be tuned.

翻译:

与任何服务器进程一样,调整TSD的内存占用对于成功安装非常重要。OpenTSDB中有许多缓存可以进行调优

UID Caches

OpenTSDB saves space in storage by converting strings to binary UIDs. However for writing and querying, these UIDs have to be cached to improve performance (otherwise every operation would amplify queries against storage). In early versions of OpenTSDB, the cache would maintain an unbounded map of strings to UIDs and UIDs to strings regardless of modes of operation. In 2.4 you can choose how much data to cache and optionally use an LRU. The pertinent settings include:

  • ‘tsd.uid.use_mode=true’ - When this is set to true, the tsd.mode value is examined to determine if either or both of the forward (string to UID) and reverse (UID to string) maps are populated. When empty or set to rw, both maps are populated. When set to ro, only the reverse map is populated (as query results need caching). When in w or write-only mode, only the forward map is populated as metrics need to find their UIDs when writing.

  • tsd.uid.lru.enable=true - Switch to the LRU version of the cache that will expire entries that haven’t been read in a while.

  • tsd.uid.lru.id.size=<integer> - For TSDs focused on reads, set this size larger than tsd.uid.lru.name.size.

  • tsd.uid.lru.name.size=<integer> - For TSDs focused on writes, set this size larger than the tsd.uid.lru.id.size.

翻译:

OpenTSDB通过将字符串转换为二进制UID来节省存储空间。然而,对于写入和查询,必须缓存这些UID以提高性能(否则,每个操作都会放大对存储的查询)。在早期版本的OpenTSDB中,无论操作模式如何,缓存都会维护字符串到UID和UID到字符串的无边界映射。在2.4中,您可以选择缓存多少数据,也可以选择使用LRU。相关设置包括:

“tsd.uid.use_mode=true”-如果设置为true,将检查tsd.mode值,以确定是否填充正向(字符串到uid)和反向(uid到字符串)映射中的一个或两个。当为空或设置为rw时,将填充两个映射。当设置为ro时,只填充反向映射(因为查询结果需要缓存)。当处于w或仅写模式时,由于写入时度量需要找到其UID,因此仅填充前向映射。

tsd.uid.lru.enable=true-切换到缓存的lru版本,该版本将使一段时间内未读取的条目过期。

tsd.uid.lru.id.size=<integer>-对于专注于读取的tsd,请将此大小设置为大于tsd.uid.lou.name.size。

tsd.uid.lru.name.size=<integer>-对于专注于写入的tsd,请将此大小设置为大于tsd.uid.loi.id.size。

HBase Storage

These are parameters to look at for using OpenTSDB with Apache HBase.

Date Tierd Compaction

HBase is an LSM store meaning data is written to blocks in memory, then flushed in blocks to disk, then periodically those blocks on disk are merged into fewer blocks to reduce file count and redundancies. The process of reading and merging blocks from disk can consume a fair amount of CPU and memory so if a system is heavily loaded with time series write traffic, background compactions can begin to impact write performance. HBase offers various compaction strategies including Date Tiered Compaction that looks at the the edit timestamps of columns to figure out if stale file that haven’t been modified should be ignored and arranges data so that time ranged queries are much more efficient.

OpenTSDB can leverage this compaction strategy (as of 2.4) to improve HBase performance, particularly for queries. To setup Date Tiered Compaction in HBase, see HBase Book. Parameters that must be set in the OpenTSDB config include:

  • tsd.storage.use_otsdb_timestamp=true - By default the edit timestamps of every data point is now. This changes the timestamp to be that of the actual data point. Note that rollups do not use this strategy yet.

  • tsd.storage.get_date_tiered_compaction_start=<Unix Epoch MS timestamp> - A timestamp in milliseconds when the date tiered compactor was enabled on a table. If you are creating a brand new table for OpenTSDB you can leave this at the default of 0.

HBase是一种LSM存储,意味着数据被写入内存中的块,然后在块中刷新到磁盘,然后定期将磁盘上的这些块合并为更少的块,以减少文件数量和冗余。从磁盘读取和合并块的过程可能会消耗相当多的CPU和内存,因此,如果系统负载了大量时间序列写入流量,则后台压缩可能会开始影响写入性能。HBase提供了各种压缩策略,包括日期分层压缩,它查看列的编辑时间戳,以确定是否应该忽略尚未修改的陈旧文件,并排列数据,从而使时间范围的查询更加高效。

OpenTSDB可以利用这种压缩策略(从2.4开始)来提高HBase的性能,特别是对于查询。要在HBase中设置日期分层压缩,请参阅HBase Book。必须在OpenTSDB配置中设置的参数包括:

HBase Read/Write Queues

HBase has the ability to split the queues that handle RPCs for writes (mutations) and reads. This is a huge help for OpenTSDB as massive queries will avoid impacting writes and vice-versa. See the HBase Book for various configuration options. Note that different HBase versions have different names for these properties.

Possible starting values are 50% or 60%. E.g. hbase.ipc.server.callqueue.read.share=0.60 or hbase.ipc.server.callqueue.read.ratio=0.60 depending on HBase version.

Also, tuning the call queue size and threads is important. With a large queue, the region server can possibly OOM (if there are a large number of writes backing up) and RPCs will be more likely to time out on the client side if they sit in the queue too long. The queue size is a factor of the number of handlers. Reducing the call queue size also helps to cause clients to throttle, particularly the AsyncHBase client. For HBase 1.3 a good setting may be hbase.ipc.server.max.callqueue.length=100 and hbase.ipc.server.read.threadpool.size=2. If you need to increase the threads, reduce the queue length as well.

翻译:

HBase能够拆分处理写(突变)和读的RPC的队列。这对OpenTSDB来说是一个巨大的帮助,因为大量查询将避免影响写入,反之亦然。有关各种配置选项,请参阅HBase Book。请注意,不同的HBase版本对这些属性有不同的名称。

可能的起始值为50%或60%。例如,hbase.ipc.server.callqueue.read.share=0.60或hbase.iipc.server.callequeue.read.tratio=0.60,具体取决于hbase版本。

此外,调整调用队列大小和线程也很重要。对于大队列,区域服务器可能会OOM(如果有大量写入备份),如果RPC在队列中停留的时间过长,则更有可能在客户端超时。队列大小是处理程序数量的一个因素。减少调用队列大小也有助于导致客户端节流,尤其是AsyncHBase客户端。对于HBase 1.3,一个好的设置可能是HBase.ipc.server.max.callqueue.length=100和HBase.iipc.server.read.threadpool.size=2。如果需要增加线程,也可以减少队列长度。

HBase Cache

Tuning the HBase cache is also important for queries as you want to avoid reading data off disk as much as possible (particularly if that disk is S3). Try using the offheap cache via hbase.bucketcache.combinedcache.enabled=true and hbase.bucketcache.ioengine=offheap. Give the offheap cache a good amount of RAM, e.g. hbase.bucketcache.size=4000 for 4GB of RAM. Since the most recent data is usually queried when reading time series, it’s a good idea to populate the block cache on writes and use most of that space for the latest data. Try the following settings:

hbase.rs.cacheblocksonwrite=true
hbase.rs.evictblocksonclose=false
hfile.block.bloom.cacheonwrite=true
hfile.block.index.cacheonwrite=true
hbase.block.data.cachecompressed=true
hbase.bucketcache.blockcache.single.percentage=.99
hbase.bucketcache.blockcache.multi.percentage=0
hbase.bucketcache.blockcache.memory.percentage=.01
hfile.block.cache.size=.054 #ignored but needs a value.

This will allocate the majority of the black cache for writes and cache it in memory.

For the on-heap cache, you can try an allocation of:

hbase.lru.blockcache.single.percentage=.50
hbase.lru.blockcache.multi.percentage=.49
hbase.lru.blockcache.memory.percentage=.01

翻译:

调整HBase缓存对于查询也很重要,因为您希望尽可能避免从磁盘上读取数据(尤其是当磁盘是S3时)。尝试通过hbase.backetcache.cocombinedcache.enabled=true和hbase.blocketcache.ioengine=offheap使用堆外缓存。为堆外缓存提供充足的RAM,例如,对于4GB的RAM,hbase.bocketcache.size=4000。由于读取时间序列时通常会查询最新的数据,因此最好在写入时填充块缓存,并将大部分空间用于最新数据。请尝试以下设置:

HBase Compaction

Compaction is the process of merging multiple stores on disk for a region into fewer files to reduce space and query times. You can tune the number of threads and thresholds for compaction to avoid using too many resources when the focus should be on writes.

hbase.hstore.compaction.ratio=1.2
hbase.regionserver.thread.compaction.large=2
hbase.regionserver.thread.compaction.small=6
hbase.regionserver.thread.compaction.throttle=524288000

压缩是将一个区域的磁盘上的多个存储合并为更少的文件以减少空间和查询时间的过程。您可以调整线程数量和压缩阈值,以避免在应该将重点放在写入上时使用过多资源。

HBase Regions

For OpenTSDB we’ve observed that 10G regions are a good size for a large cluster hbase.hregion.max.filesize=10737418240.

翻译:

对于OpenTSDB,我们已经观察到10G区域对于大型集群hbase.hregion.max.filesize=1037418240来说是一个不错的大小。

HBase Memstore

Try flushing the mem store to disk (and cache) more often, particularly for heavy write loads. We’ve seen good behavior with 16MBs hbase.hregion.memstore.flush.size=16777216. Also try reducing the memstore size limit via hbase.regionserver.global.memstore.lowerLimit=.20 and hbase.regionserver.global.memstore.upperLimit=.30.

翻译: 

请尝试更频繁地将内存存储刷新到磁盘(和缓存),尤其是在写负载很大的情况下。我们已经看到了16MB hbase.hregion.memstore.flash.size=16777216的良好性能。也可以尝试通过hbase.regiserver.global.membestore.lowerLimit=.20和hbase.reregionserver.global-memstore.upperLimit=.30来减少内存存储大小限制。

这篇关于Opentsdb官方优化文档 - 翻译的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/593575

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、