AKAZE算法分析

2024-01-11 01:58
文章标签 算法 分析 akaze

本文主要是介绍AKAZE算法分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 算法简介

局部特征相关算法在过去二十年期间风靡一时,其中代表的有SIFT、SURF算法等(广泛应用于目标检测、识别、匹配定位中),这两种算法是用金字塔策略构建高斯尺度空间(SURF算法采用框滤波来近似高斯函数)。不论SIFT还是SURF算法在构造尺度空间时候存在一个重要的缺点:高斯模糊不保留对象边界信息并且在所有尺度上平滑到相同程度的细节与噪声,影响定位的准确性和独特性
  针对高斯核函数构建尺度空间的缺陷,有学者提出了非线性滤波构建尺度空间:双边滤波非线性扩散滤波方式。非线性滤波策略构建尺度空间主要能够局部自适应进行滤除小细节同时保留目标的边界使其尺度空间保留更多的特征信息。例如:BFSIFT采取双边滤波与双向匹配方式改善SIFT算法在SAR图像上匹配性能低下的问题(主要由于SAR图像斑点噪声严重),但是付出更高的计算复杂度。AKAZE作者之前提出的KAZE算法采取非线性扩散滤波相比于SIFT与SURF算法提高了可重复性和独特性。但是KAZE算法缺点在于计算密集,通过AOS数值逼近的策略来求解非线性扩散方程,虽然AOS求解稳定并且可并行化,但是需要求解大型线性方程组,在移动端实时性要求难以满足。

2 非线性扩散滤波

作者目的在于如何将局部特征算法应用到移动设备(由于移动设备资源有限同时实时性要求较高),主要正对KAZE算法改进一下两点1 利用非线性扩散滤波的优势获取低计算要求的特征,因此作者引入快速显示扩散数学框架FED来快速求解偏微分方程。采用FED来建立尺度空间要比当下其它的非线性模式建立尺度空间都要快,同时比AOS更加准确。2 引入一个高效的改进局部差分二进制描述符(M-LDB),较原始LDB增加了旋转与尺度不变的鲁棒性,结合FED构建的尺度空间梯度信息增加了独特性。与SIFT、SURF算法相比,AKAZE算法更快同时与ORB、BRISK算法相比,可重复性与鲁棒性提升很大。

3 Accelerated-KAZE特征
3.1 快速显示扩散(FED)

非线性扩散滤波描述图像亮度的演化是通过提升尺度参数作为热扩散函数的散度因子来控制扩散过程。通常采用偏微分方程进行求解,由于涉及微分方程非线性性质,通过图像亮度的扩散来构建尺度空间。经典非线性扩散方程如下: ∂ L ∂ t = d i v ( c ( x , y , t ) ∙ ∇ L ) \frac{∂L}{∂t}=div(c(x,y,t)∙∇L) tL=div(c(x,y,t)L)   参数解释:L为图像亮度矩阵,div分别代表散度与梯度求解操作。由于扩散方程中引入传导函数c能够自适应于图像局部结构特性进行扩散。传导函数依赖于图像局部差分结构可以是标量或者张量形式。时间参数t对应于尺度因子,在扩散过程中通过图像梯度大小来控制。传导函数公式定义如下: c ( x , y , t ) = g ( ∣ ∇ L σ ( x , y , t ) ∣ ) c(x,y,t)=g(|∇L_σ (x,y,t)|) c(x,y,t)=g(Lσ(x,y,t)) 参数解释: ∇ L σ ∇L_σ Lσ是经过高斯函数(尺度参数σ)平滑图像L。针对区域扩散平滑最优选择传导核函数: g 2 = 1 ( 1 + ∣ ∇ L σ ∣ 2 λ 2 ) g_2=\frac{1}{(1+\frac{|∇L_σ |^2}{λ^2} ) } g2=(1+

这篇关于AKAZE算法分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592779

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

dp算法练习题【8】

不同二叉搜索树 96. 不同的二叉搜索树 给你一个整数 n ,求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种?返回满足题意的二叉搜索树的种数。 示例 1: 输入:n = 3输出:5 示例 2: 输入:n = 1输出:1 class Solution {public int numTrees(int n) {int[] dp = new int

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者