BloomFilter和BitMap的介绍与使用

2024-01-11 00:52

本文主要是介绍BloomFilter和BitMap的介绍与使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、BloomFilter
    • 1、是什么?
    • 2、BloomFilter的使用
  • 二、Bitmap
    • 1、是什么?
    • 2、Bitmap的使用
  • 三、总结
    • 1、区别
    • 2、遇到问题:OOM command not allowed when used memory > 'maxmemory'.

一、BloomFilter

1、是什么?

BloomFilter是一种概率型数据结构,用于判断一个元素是否存在于集合中。它通过使用多个哈希函数和位数组来实现。当一个元素被添加到BloomFilter中时,它会被哈希成多个不同的位置,并将这些位置对应的位数组置为1。

当需要判断一个元素是否存在于BloomFilter中时,它会被哈希成相同的位置,并检查这些位置对应的位数组是否都为1。如果有任何一个位置的位数组为0,则可以确定该元素一定不存在于集合中;如果所有位置的位数组都为1,则该元素可能存在于集合中,但也可能是误判。因此,BloomFilter具有一定的误判率,但它的优点是占用空间小且查询速度快。

总的来说,特点就是在的不一定在,不在的一定不在。

2、BloomFilter的使用

将Guava库添加到您的项目依赖中

<dependency><groupId>com.google.guava</groupId><artifactId>guava</artifactId><version>30.1-jre</version>
</dependency>

创建一个Bloom Filter对象,指定预期元素数量和期望的误报率。

BloomFilter<String> bloomFilter = BloomFilter.create(Funnels.stringFunnel(Charsets.UTF_8), expectedInsertions, falsePositiveRate);

expectedInsertions是预期元素数量,falsePositiveRate是期望的误报率。

使用put方法将元素添加到Bloom Filter中:

bloomFilter.put(element);

使用mightContain方法来检查一个元素是否可能存在于Bloom Filter中:

boolean isPresent = bloomFilter.mightContain(element);

如果返回true,则表示元素可能存在于Bloom Filter中;如果返回false,则表示元素一定不存在于Bloom Filter中。

Bloom Filter是一个概率性数据结构,它可以快速判断一个元素可能存在于集合中,但有一定的误报率。因此,它适用于那些可以容忍一定误报率的场景,例如缓存、大规模数据过滤等。

二、Bitmap

1、是什么?

Redis的Bitmap是一种位图数据结构,用于存储和操作位级别的数据。它可以表示一组二进制位,并提供了一些位操作的功能,如设置位、清除位、计数位等。

在Redis中,位图可以使用字符串类型来表示,每个字符可以存储8个位。通过使用位操作命令,可以对位图进行各种操作,如设置某个位的值、获取某个位的值、统计位图中值为1的位的数量等。

位图在实际应用中有很多用途,例如记录用户的在线状态、统计用户的活跃度、进行布隆过滤器等。由于位图的存储方式非常紧凑,可以节省存储空间,并且位操作命令的执行速度非常快,因此在某些场景下,位图是一种非常高效的数据结构。

2、Bitmap的使用

将Jedis库添加到您的项目依赖中

<dependency><groupId>redis.clients</groupId><artifactId>jedis</artifactId>
</dependency>

创建一个Jedis对象,用于与Redis建立连接:

Jedis jedis = new Jedis("localhost", 6379);

使用setbit命令将位图中的某个位设置为指定的值(0或1):

jedis.setbit("bitmap-key", offset, value);

bitmap-key是位图的键名,offset是要设置的位的偏移量,value是要设置的值(0或1)。

使用getbit命令获取位图中指定位的值:

boolean bitValue = jedis.getbit("bitmap-key", offset);

bitmap-key是位图的键名,offset是要获取的位的偏移量。bitValue将返回位的值(0或1)。

位图的偏移量从0开始,可以表示非常大的位集合。您可以使用bitcount命令计算位图中设置为1的位的数量。

三、总结

1、区别

BloomFilter和Redis的Bitmap是两种不同的数据结构,用于不同的目的。

  • BloomFilter是一种概率型数据结构,用于判断一个元素是否存在于集合中。它通过使用多个哈希函数和位数组来实现。BloomFilter可以用于快速判断一个元素是否可能存在于集合中,但有一定的误判率。

  • Redis的Bitmap是一种位图数据结构,用于存储和操作位级别的数据。它可以表示一组二进制位,并提供了一些位操作的功能,如设置位、清除位、计数位等。Redis的Bitmap可以用于记录用户的在线状态、统计用户的活跃度等。

总结来说,BloomFilter主要用于判断元素的存在性,而Redis的Bitmap主要用于位级别的数据操作。它们在功能和应用场景上有所不同。

2、遇到问题:OOM command not allowed when used memory > ‘maxmemory’.

redis内存不够了,超过了最大内存

查看内存大小,单位为b,转为M的话,可以除以1024*1024

CONFIG GET maxmemory

设置内存大小

 CONFIG SET maxmemory xxx

这篇关于BloomFilter和BitMap的介绍与使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592632

相关文章

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}