【100天精通Python】Day63:Python可视化_Matplotlib绘制子图,子图网格布局属性设置等示例+代码

本文主要是介绍【100天精通Python】Day63:Python可视化_Matplotlib绘制子图,子图网格布局属性设置等示例+代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 目录

1 基本子图绘制示例

2 子图网格布局

3 调整子图的尺寸

4 多行多列的子图布局

5 子图之间的共享轴

6 绘制多个子图类型

7 实战:

绘制一个大图,里面包含6个不同类别的子图,不均匀布局。


绘制子图(subplots)是在Matplotlib中创建多个子图的常见任务。通过子图,您可以将多个图形放置在同一图表中,以便比较不同的数据或可视化多个相关的图形。一般流程如下:

  1. 创建图形对象:首先,您需要创建一个图形对象,可以使用plt.figure()函数来完成。该图形对象代表整个图形窗口,您可以在其中放置多个子图。

  2. 添加子图:使用fig.add_subplot()函数来添加子图。这个函数接受三个参数,分别是行数、列数和子图的索引位置。例如,fig.add_subplot(2, 2, 1)表示将创建一个2x2的网格,并在第一个位置创建子图。

  3. 绘制图表:在每个子图中,您可以使用Matplotlib的绘图函数(如plot()scatter()bar()等)来绘制不同类型的图表。

  4. 子图属性设置:您可以设置每个子图的标题、坐标轴标签、背景颜色、图例等属性,以使其更具可读性和吸引力。

  5. 调整子图布局:Matplotlib允许您调整子图之间的间距,以便更好地组织和排列它们。可以使用plt.subplots_adjust()函数来完成这个任务。

  6. 显示图形:一旦您创建并设置了所有子图,使用plt.show()函数来显示整个图形。

1 基本子图绘制示例

首先,让我们看一个基本的子图绘制示例。使用plt.subplots()函数,您可以创建一个包含多个子图的图表,并将这些子图放置在一个网格中。以下是一个基本的示例:

import matplotlib.pyplot as plt
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)# 创建一个包含两个子图的图表
fig, axes = plt.subplots(nrows=1, ncols=2)# 在第一个子图中绘制正弦函数
axes[0].plot(x, y1, label='Sine Function', color='blue')
axes[0].set_title('Sine Function')# 在第二个子图中绘制余弦函数
axes[1].plot(x, y2, label='Cosine Function', color='red')
axes[1].set_title('Cosine Function')# 显示图例
axes[0].legend()
axes[1].legend()# 显示图形
plt.show()

运行:

        以上代码演示了如何使用Matplotlib创建一个包含两个子图的图表。这两个子图分别显示了正弦函数和余弦函数的曲线。

  1. 导入Matplotlib库和NumPy库。
  2. 创建示例数据,使用NumPy的linspace函数生成0到2π之间的100个点作为x轴数据,同时计算对应的正弦值和余弦值作为y轴数据。
  3. 使用plt.subplots函数创建一个图表和一个由子图对象组成的数组。其中nrows=1表示创建一个行数为1,列数为2的图表。
  4. 在第一个子图中绘制正弦函数曲线,使用plot函数,并指定标签(label)和颜色(color)。同时设置标题(set_title)为"Sine Function"。
  5. 在第二个子图中绘制余弦函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Cosine Function"。
  6. 显示图例,使用legend函数,在每个子图中显示曲线的标签。
  7. 最后调用plt.show()来显示图形。

2 子图网格布局

        Matplotlib还允许您以更复杂的方式布局子图,以满足您的需求。您可以使用gridspec模块来实现更灵活的子图布局。以下是一个示例,演示如何使用gridspec创建子图网格:

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
y3 = np.tan(x)# 创建一个包含多个子图的图表,使用gridspec定义子图布局
fig = plt.figure(figsize=(10, 4))
gs = gridspec.GridSpec(1, 3)  # 1行3列的子图布局# 第一个子图
ax1 = plt.subplot(gs[0, 0])
ax1.plot(x, y1, label='Sine Function', color='blue')
ax1.set_title('Sine Function')
ax1.legend()# 第二个子图
ax2 = plt.subplot(gs[0, 1])
ax2.plot(x, y2, label='Cosine Function', color='red')
ax2.set_title('Cosine Function')
ax2.legend()# 第三个子图
ax3 = plt.subplot(gs[0, 2])
ax3.plot(x, y3, label='Tangent Function', color='green')
ax3.set_title('Tangent Function')
ax3.legend()# 调整子图之间的距离
plt.tight_layout()# 显示图形
plt.show()

运行: 

        这个示例创建了一个包含三个子图的图表,使用gridspec模块定义了子图的布局。每个子图包含不同的三角函数,并具有自己的标题和图例。

  1. 导入Matplotlib库和NumPy库。
  2. 创建示例数据,使用NumPy的linspace函数生成0到2π之间的100个点作为x轴数据,同时计算对应的正弦、余弦和正切值作为y轴数据。
  3. 创建一个Figure对象,设置图表的大小为(10, 4)。
  4. 使用gridspec.GridSpec函数创建一个网格布局,指定1行3列的子图布局。
  5. 在第一个子图(ax1)中绘制正弦函数曲线,使用plot函数,并指定标签(label)和颜色(color)。同时设置标题(set_title)为"Sine Function"并显示图例(legend)。
  6. 在第二个子图(ax2)中绘制余弦函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Cosine Function"并显示图例。
  7. 在第三个子图(ax3)中绘制正切函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Tangent Function"并显示图例。
  8. 调用plt.tight_layout()函数来自动调整子图之间的距离。
  9. 最后调用plt.show()来显示图形。

3 调整子图的尺寸

以下是一些常用的参数,用于调整子图的尺寸和位置:

  1. nrowsncols:这两个参数用于指定子图的网格布局的行数和列数。例如,fig.add_subplot(2, 2, 1)表示一个2x2的网格布局,其中有4个子图。

  2. index:该参数指定子图在网格中的位置。例如,fig.add_subplot(2, 2, 1)表示在2x2的网格中的第一个位置创建子图。

  3. position:通过position参数,您可以设置子图的位置和大小,它是一个四元组,表示子图的左、下、宽度和高度。例如,fig.add_subplot(position=[0.1, 0.1, 0.8, 0.8])表示在图形中创建一个左上角偏移10%并且宽度和高度都为80%的子图。

  4. projection:用于指定子图的投影类型,例如3D子图、极坐标子图等。

  5. polar:一个布尔值,用于指定子图是否使用极坐标。默认为False。

您可以通过设置gridspec中每个子图的相对宽度来调整子图的尺寸。以下示例将第一个子图的宽度设置为其他两个子图的两倍:

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
y3 = np.tan(x)# 创建一个包含多个子图的图表,使用gridspec定义子图布局
fig = plt.figure(figsize=(12, 4))# 1行3列的子图布局,第一个子图宽度为其他两个的两倍
gs = gridspec.GridSpec(1, 3, width_ratios=[2, 1, 1]) # 第一个子图
ax1 = plt.subplot(gs[0, 0])
ax1.plot(x, y1, label='Sine Function', color='blue')
ax1.set_title('Sine Function')
ax1.legend()# 第二个子图
ax2 = plt.subplot(gs[0, 1])
ax2.plot(x, y2, label='Cosine Function', color='red')
ax2.set_title('Cosine Function')
ax2.legend()# 第三个子图
ax3 = plt.subplot(gs[0, 2])
ax3.plot(x, y3, label='Tangent Function', color='green')
ax3.set_title('Tangent Function')
ax3.legend()# 调整子图之间的距离
plt.tight_layout()# 显示图形
plt.show()

         以上代码演示了如何使用Matplotlib创建一个包含多个子图的图表,并使用gridspec来定义子图布局。代码的步骤如下:

  1. 导入Matplotlib库和NumPy库。
  2. 创建示例数据,使用NumPy的linspace函数生成0到2π之间的100个点作为x轴数据,同时计算对应的正弦、余弦和正切值作为y轴数据。
  3. 创建一个Figure对象,设置图表的大小为(12, 4)。
  4. 使用gridspec.GridSpec函数创建一个网格布局,指定1行3列的子图布局,并通过width_ratios参数设置第一个子图的宽度为其他两个子图的两倍。
  5. 在第一个子图(ax1)中绘制正弦函数曲线,使用plot函数,并指定标签(label)和颜色(color)。同时设置标题(set_title)为"Sine Function"并显示图例(legend)。
  6. 在第二个子图(ax2)中绘制余弦函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Cosine Function"并显示图例。
  7. 在第三个子图(ax3)中绘制正切函数曲线,同样使用plot函数,并指定标签和颜色。设置标题为"Tangent Function"并显示图例。
  8. 调用plt.tight_layout()函数来自动调整子图之间的距离。
  9. 最后调用plt.show()来显示图形。

4 多行多列的子图布局

        您可以使用gridspec创建多行多列的子图布局,以便在一个图表中组织更多的子图。以下示例演示了一个包含多行多列子图的图表:

import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)# 创建一个包含多行多列子图的图表,使用gridspec定义子图布局
fig = plt.figure(figsize=(10, 6))
gs = gridspec.GridSpec(3, 2)  # 3行2列的子图布局# 绘制多行多列的子图
for i in range(3):for j in range(2):ax = plt.subplot(gs[i, j])ax.plot(x, y, label='Sine Function', color='blue')ax.set_title(f'Subplot ({i+1}, {j+1})')ax.legend()# 调整子图之间的距离
plt.tight_layout()# 显示图形
plt.show()

运行: 

5 子图之间的共享轴

        您可以通过设置sharexsharey参数来共享子图之间的X轴或Y轴。以下示例演示了在子图之间共享X轴的情况:

import matplotlib.pyplot as plt
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)# 创建一个包含多个子图的图表
fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(8, 6))# 第一个子图,共享X轴
ax1.plot(x, y1, label='Sine Function', color='blue')
ax1.set_title('Shared X-Axis')
ax1.legend()# 第二个子图,共享X轴
ax2.plot(x, y2, label='Cosine Function', color='red')
ax2.legend()# 调整子图之间的距离
plt.tight_layout()# 显示图形
plt.show()

运行: 

共享Y轴示例:

        在这个示例中,我们创建了两个子图,通过sharey=True参数来共享Y轴。这两个子图分别绘制了sin函数和cos函数,并共享相同的Y轴刻度。整体标题用suptitle函数添加。这个示例演示了如何创建共享Y轴的子图。代码如下:

import matplotlib.pyplot as plt
import numpy as np# 创建示例数据
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)# 创建两个子图,共享Y轴
fig, (ax1, ax2) = plt.subplots(1, 2, sharey=True, figsize=(10, 4))# 在第一个子图上绘制sin函数
ax1.plot(x, y1, label='Sine Function', color='blue', linestyle='--')
ax1.set_title('Subplot 1: Sine Function')
ax1.set_xlabel('X-axis')
ax1.set_ylabel('Y-axis')
ax1.legend()# 在第二个子图上绘制cos函数
ax2.plot(x, y2, label='Cosine Function', color='red', linestyle='-')
ax2.set_title('Subplot 2: Cosine Function')
ax2.set_xlabel('X-axis')
ax2.legend()# 添加整体标题
plt.suptitle('Two Subplots Sharing Y-Axis', fontsize=16, fontweight='bold')# 显示图形
plt.show()

运行: 

6 绘制多个子图类型

        您可以在同一个图表中组合不同类型的子图,例如线图和散点图。以下示例演示了如何在同一图表中绘制多个子图类型:

import matplotlib.pyplot as plt
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y1 = np.sin(x)
y2 = np.cos(x)
x_scatter = np.random.rand(50) * 2 * np.pi
y_scatter = np.sin(x_scatter)# 创建一个包含多个子图的图表
fig, axs = plt.subplots(2, 2, figsize=(10, 6))# 第一个子图:线图
axs[0, 0].plot(x, y1, label='Sine Function', color='blue')
axs[0, 0].set_title('Line Plot')
axs[0, 0].legend()# 第二个子图:散点图
axs[0, 1].scatter(x_scatter, y_scatter, label='Scatter Points', color='red', marker='o')
axs[0, 1].set_title('Scatter Plot')
axs[0, 1].legend()# 第三个子图:线图
axs[1, 0].plot(x, y2, label='Cosine Function', color='green')
axs[1, 0].set_title('Line Plot')
axs[1, 0].legend()# 第四个子图:散点图
axs[1, 1].scatter(x_scatter, y_scatter, label='Scatter Points', color='purple', marker='s')
axs[1, 1].set_title('Scatter Plot')
axs[1, 1].legend()# 调整子图之间的距离
plt.tight_layout()# 显示图形
plt.show()

运行: 

  1. 导入Matplotlib库和NumPy库。
  2. 创建示例数据,使用NumPy的linspace函数生成0到2π之间的100个点作为x轴数据,并计算对应的正弦值和余弦值作为y轴数据。还生成了50个随机点用于绘制散点图。
  3. 创建一个包含2行2列子图的图表,使用 ​subplots​函数并设置 ​figsize​参数指定图表的大小。​subplots​函数会返回一个Figure对象和一个包含子图的Axes对象的二维数组。
  4. 在第一个子图(axs[0, 0])中绘制正弦函数的线图,使用 ​plot​函数,并指定标签(label)和颜色(color)。设置标题(set_title)为"Line Plot"并显示图例(legend)。
  5. 在第二个子图(axs[0, 1])中绘制散点图,使用 ​scatter​函数,并指定标签、颜色和标记(marker)类型。同样设置标题和图例。
  6. 在第三个子图(axs[1, 0])中绘制余弦函数的线图,使用 ​plot​函数,并指定标签和颜色。设置标题和图例。
  7. 在第四个子图(axs[1, 1])中绘制散点图,使用 ​scatter​函数,并指定标签、颜色和标记类型。同样设置标题和图例。
  8. 使用 ​tight_layout​函数调整子图之间的距离,使其更美观。
  9. 调用 ​show​函数显示图形。

7 实战:

绘制一个大图,里面包含6个不同类别的子图,不均匀布局。

第一行放一个子图,第二行放两个子图 ,第三行放三个子图 ,分别自适应设置子图的尺寸和背景色,示例与代码如下:

import matplotlib.pyplot as plt
import numpy as np# 创建示例数据
x = np.linspace(0, 2 * np.pi, 100)
y = np.sin(x)# 创建图形
fig = plt.figure(figsize=(12, 8))# 在上方添加母图标题
fig.suptitle('Customized Subplots Example', fontsize=16, fontweight='bold') # fig.suptitle('Customized Subplots Example', fontsize=16, fontweight='bold', y=0.05) # 在下方添加母图标题# 调整子图的布局,增加垂直间距,避免子图之间有交叉
plt.subplots_adjust(hspace=0.5)# 第一行,一个子图,绘制线图
ax1 = fig.add_subplot(3, 1, 1)
ax1.plot(x, y, color='blue', label='Sine Function', linewidth=2, linestyle='--', marker='o', markersize=5)
ax1.set_title('Line Plot', fontsize=14)
ax1.set_facecolor('lightgray')
ax1.set_xlabel('X-axis', fontsize=12)
ax1.set_ylabel('Y-axis', fontsize=12)
ax1.legend()# 添加注释
ax1.annotate('Peak Point', xy=(np.pi/2, 1), xytext=(np.pi/2, 1.2),arrowprops=dict(facecolor='black', shrink=0.05),fontsize=12, bbox=dict(boxstyle='round,pad=0.3', edgecolor='black', facecolor='yellow'))# 第二行,两个子图,一个散点图,一个柱状图
ax2 = fig.add_subplot(3, 2, 3)
ax2.scatter(x, y, color='red', label='Scatter Plot', s=20)
ax2.set_title('Scatter Plot', fontsize=14)
ax2.set_facecolor('lightyellow')
ax2.set_xlabel('X-axis', fontsize=12)
ax2.set_ylabel('Y-axis', fontsize=12)
ax2.legend()ax3 = fig.add_subplot(3, 2, 4)
ax3.bar(x, y, color='green', label='Bar Plot', alpha=0.7)
ax3.set_title('Bar Plot', fontsize=14)
ax3.set_facecolor('lightgreen')
ax3.set_xlabel('X-axis', fontsize=12)
ax3.set_ylabel('Y-axis', fontsize=12)
ax3.legend()# 第三行,三个子图,一个直方图,一个饼图,一个箱线图
ax4 = fig.add_subplot(3, 3, 7)
ax4.hist(y, bins=20, color='purple', label='Histogram', alpha=0.7)
ax4.set_title('Histogram', fontsize=14)
ax4.set_facecolor('lightpink')
ax4.set_xlabel('X-axis', fontsize=12)
ax4.set_ylabel('Frequency', fontsize=12)
ax4.legend()ax5 = fig.add_subplot(3, 3, 8)
ax5.pie([len(y[y > 0]), len(y[y < 0])], labels=['Positive', 'Negative'], colors=['orange', 'lightblue'], autopct='%1.1f%%')
ax5.set_title('Pie Chart', fontsize=14)
ax5.set_facecolor('lightcoral')
ax5.legend()ax6 = fig.add_subplot(3, 3, 9)
ax6.boxplot(y, vert=False, widths=0.3, patch_artist=True, boxprops=dict(facecolor='lightgray'))
ax6.set_title('Box Plot', fontsize=14)
ax6.set_facecolor('lightblue')
ax6.set_xlabel('X-axis', fontsize=12)
ax6.legend([])  # 添加空的图例以解决警告# 调整子图布局
plt.tight_layout()# 显示图形
plt.show()

运行:

上面的示例代码演示了如何创建一个包含不同类型子图的图形,并对每个子图进行了定制化设置。代码流程:

  1. 创建示例数据:使用numpy生成示例数据,这里生成了一个sin函数的数据。

  2. 创建图形对象:使用plt.figure()创建一个图形对象,可以设置图形的大小。

  3. 添加母图标题:使用fig.suptitle()可以为整个图形添加一个标题。

  4. 调整子图的布局:使用plt.subplots_adjust()可以调整子图之间的间距,这里增加了垂直间距。

  5. 创建子图:使用fig.add_subplot()创建子图,指定子图的位置和数量

  6. 绘制不同类型的子图:根据需要,创建不同类型的子图,如线图、散点图、柱状图、直方图、饼图、箱线图等。

  7. 设置子图的标题、背景色、坐标轴标签和图例:使用set_title()set_facecolor()set_xlabel()set_ylabel()legend()方法来设置子图的各种属性。

  8. 添加注释:使用annotate()方法可以在子图上添加注释。

  9. 调整子图布局:使用plt.tight_layout()可以自动调整子图的布局,使其适应图形大小。

  10. 显示图形:使用plt.show()显示最终的图形。

这个示例演示了如何在一个图形中创建多个子图,并对每个子图进行不同的设置和绘制不同类型的图表。

这篇关于【100天精通Python】Day63:Python可视化_Matplotlib绘制子图,子图网格布局属性设置等示例+代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/592229

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

mybatis和mybatis-plus设置值为null不起作用问题及解决

《mybatis和mybatis-plus设置值为null不起作用问题及解决》Mybatis-Plus的FieldStrategy主要用于控制新增、更新和查询时对空值的处理策略,通过配置不同的策略类型... 目录MyBATis-plusFieldStrategy作用FieldStrategy类型每种策略的作

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque